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Abstract

On Short-Term Load Forecasting Using Machine
Learning Techniques

Behnam Farsi

Since electricity plays a crucial role in industrial infrastructures of coun-
tries, power companies are trying to monitor and control infrastructures to
improve energy management, scheduling and develop efficiency plans. Smart
Grids are an example of critical infrastructure which can lead to huge advan-
tages such as providing higher resilience and reducing maintenance cost. Due
to the nonlinear nature of electric load data there are high levels of uncertain-
ties in predicting future load. Accurate forecasting is a critical task for stable
and efficient energy supply, where load and supply are matched. However,
this non-linear nature of loads presents significant challenges for forecasting.
Many studies have been carried out on different algorithms for electricity
load forecasting including; Deep Neural Networks, Regression-based meth-
ods, ARIMA and seasonal ARIMA (SARIMA) which among the most popu-
lar ones. This thesis discusses various algorithms analyze their performance
for short-term load forecasting. In addition, a new hybrid deep learning
model which combines long short-term memory (LSTM) and a convolutional
neural network (CNN) has been proposed to carry out load forecasting with-
out using any exogenous variables. The difference between our proposed
model and previously hybrid CNN-LSTM models is that in those models,
CNN is usually used to extract features while our proposed model focuses on
the existing connection between LSTM and CNN. This methodology helps
to increase the model’s accuracy since the trend analysis and feature extrac-
tion process are accomplished, respectively, and they have no effect on each
other during these processes. Two real-world data sets, namely ”hourly load
consumption of Malaysia” as well as ”daily power electric consumption of
Germany”, are used to test and compare the presented models. To evalu-
ate the performance of the tested models, root mean squared error (RMSE),
mean absolute percentage error (MAPE) and R-squared were used. The re-
sults show that deep neural networks models are good candidates for being
used as short-term prediction tools. Moreover, the proposed model improved
the accuracy from 83.17% for LSTM to 91.18% for the German data. Like-
wise, the proposed model’s accuracy in Malaysian case is 98.23% which is
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an excellent result in load forecasting. In total, this thesis is divided into
two parts, first part tries to find the best technique for short-term load fore-
casting, and then in second part the performance of the best technique is
discussed. Since the proposed model has the best performance in the first
part, this model is challenged to predict the load data of next day, next two
days and next 10 days of Malaysian data set as well as next 7 days, next
10 days and next 30 days of German data set. The results show that the
proposed model also has performed well where the accuracy of 10 days ahead
of Malaysian data is 94.16% and 30 days ahead of German data is 82.19%.
Since both German and Malaysian data sets are highly aggregated data, a
data set from a research building in France is used to challenge the proposed
model’s performance. The average accuracy from the French experiment is
almost 77% which is reasonable for such a complex data without using any
auxiliary variables. However, as Malaysian data and French data includes
hourly weather data, the performance of the model after adding weather is
evaluated to compare them before using weather data. Results show that
weather data can have a positive influence on the model. These results show
the strength of the proposed model and how much it is stable in front of
some challenging tasks such as forecasting in different time horizons using
two different data sets and working with complex data.
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Chapter 1
Introduction

1.1 Introduction and Related Work

According to the IEA report [24], in 2017, world electricity consumption
reached 21,372 TWh, which is 2.6% higher than 2016 electricity consump-
tion. Such an annual increase creates a new problem: how to reduce the
consumption? Nowadays, many companies are working on this problem and
trying to solve it. Demand Response Management, which is one of the main
features in smart grids [2], helps to control the electricity consumption with
the focus on the customer side. It is important to understand residential
and non-residential building demand and use of electricity. It is obvious that
carrying out a reduction in load consumption can lead to a number of eco-
nomic and environmental benefits. Load forecasting methods can provide an
alternative solution to electricity network augmentation as it can be useful to
manage the electricity demand and provide more energy efficiency [3]. In ad-
dition, improving power delivery quality along with having secure networks
is an important task in smart grids in order to monitor and support advanced
power distribution systems [1] and in particular to improve load forecasting.
Since future consumption could be predicted, they can be considered as tools
to minimize the gap between electricity supply and user consumption. How-
ever, an inaccurate prediction may lead to huge loss. For instance, a small
percentage of increase in forecast error was predicted in 1985, which led to
more than 10 million pounds of yearly detriment in the UK thermal power
systems [4]. Thus, many big companies have focused on accurate load fore-
casting and load managements. The Energy Supply Association of Australia
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as an instance, invested about 80% of its budget on grid upgrade.
Load forecasting approaches are categorized in four different groups with

respect to their functionalities for different purposes [5, 20]: Very Short-
term Load Forecasting (VSTF), Short-term Load Forecasting (STLF) [19],
Medium-term Load Forecasting (MTLF) and Long-term Load Forecasting
(LTLF) [18]. VSTLF aims to forecast the next minutes of load consump-
tion, STLF forecasts the following hour load to next week, while in MTLF
this prediction time is more than one week to a few months and LTLF fore-
casts the next years load consumption. For each of these methods, there are
diverse factors which influence the prediction. Due to the ability of STLF ap-
proaches, they have remarkable importance in energy management. Hence,
they have been used to provide proper management in electric equipments
and because of this contribution, they are known as an inevitable component
in Energy Management Systems. An error in STLF can have immediate im-
pact on electrical equipment. Several factors affect the STLF, including the
following ones: (1) Time factor [5], which is the most important factor for
STLF because of existence of some patterns such as daily patterns in a set
of data (2) Climate, which contains temperature, humidity and some special
evidences is playing an important role in load forecasting [5]. (3) Holidays
can make huge changes in electricity demand.

The aforementioned factors can affect the MTLF and LTLF too. The
authors in [7] have done a detailed study on LTLF using multiple linear
regression (MLR). They discussed the effect of various factors including tem-
perature, holidays, weekdays and weekend on LTLF application. However,
due to its importance and less dependency on various variables, most of the
researchers have focused on STLF. Since power companies need to control
everyday power system operations, STLF is an essential tool for them to
have an approximation of ranging everyday electricity usage. However,they
are both delicate processes and any fault may bring huge additional costs for
user [6]. Due to this reason and the importance of accurate load forecasted
data, this thesis studies load forecasting with a major focus on STLF tasks.

As it mentioned before, many studies have tackled load forecasting with
various methods. The authors in [8] reviewed different regression based meth-
ods [17] for STLF. In another study [9], the author investigated different MLR
for load forecasting. The problem within these regression based methods is
that they need some external variables such as weather, wind speed, etc
to achieve accurate results. Auto-regressive models are another well-known
methodology which are able to be used for load forecasting purposes. Among
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these models, autoregressive integrated moving average (ARIMA) is highly
used and it has been able to provide acceptable prediction results, for example
the author in [10] has used ARIMA and Box-Jenkins methodology to carry
out an hourly prediction. As with regression based methods, auto regressive
models come with number of disadvantages in which complex computations
and high computation time are the most important problems. Concerning the
meaning of complex computation, it means that to predict future load data
some mathematical calculation should be done to find out the parameters of
formulas. Because of the existing problems within statistical and mathemati-
cal models, many researchers have started using deep learning [21,22] in load
forecasting applications. In [11] the authors studied 7 different models on 3
real-world data sets and they showed that these deep learning methods have
enough potential to be used in load forecasting applications instead of some
mathematical techniques like ARIMA. Since the world is developing, inno-
vation in each research field is significant and because of that in some works
such as [12], the authors proposed a new parallel model which is a combi-
nation of convolutional neural network (CNN) and recurrent neural network
(RNN). As RNNs use control theory in their structure, they are able to find
the dependency between old data and new ones and they have become an
interesting network for load forecasting applications in recent year. Regard-
ing how RNNs work, [14] has done a suitable study on these networks. In
another study close to [12], the authors in [13] proposed an hybrid of long
short-term memory (LSTM) and CNN. The proposed model’s results proved
that it can have more stable performance in load forecasting compared to
other learning machines. Likewise, the authors in [15] proposed a new Deep-
Energy model which is a combination of 1-D CNN to extract the features and
fully connected network to forecast future load data. To forecast the next 3
days data, they used an hourly electricity consumption data set from USA.
To train the data previous 7 days was used. They compared the proposed
model’s result with 5 other machine learning technique through RMSE and
MAPE. The results showed that the DeepEnergy model has more ability to
carry out an accurate short-term load forecasting compare to other models.
After DeepEnergy model, Random Forest technique [16] had done a reason-
able performance. In another study [59], the authors proposed a new model
which consists of three algorithms including Variational Mode Decomposition
(VMD), Convolutional Neural Network (CNN) and Gated Neural Network
(GRU), and for more convenience they called the proposed model SEPNet.
This model aimed to predict hourly electric price and in order to evaluate the
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model, an hourly data from city Newyork, USA which includes the hourly
electricity price from 2015 to 2018. In terms of the model performance, com-
pared to other models such as LSTM, CNN, VMD-CNN, the SEPNet model
performed better where it improved the RMSE and MAPE 25% and 19%, re-
spectively. Also some authors such as [60] used ANNs to forecast other type
of load data like PV system output data. They proposed a powerful CNN
based model called PVPNet and they evaluated the proposed model through
using a daily data from 2015. They used 3 past days information to predict
next 24h. Regarding the mean absolute error (MAE) and RMSE, the model
has performed Random Forest (RF). However, with technology development,
many studies deployed machine learning models in IOT. In terms of technical
part, if these models are supposed to being used in IOT they must be able to
perform online load forecasting. [61] presents some related machine learning
methods which can be used in IOT through cloud. They also implemented a
novel hardware technology including Arduino microcontroller. They imple-
mented the device in a research lab to predict total power consumption in
lab. Regarding the algorithms, Linear Regression, SVM Regression, Ensem-
ble Bagged, Ensemble Boosted, Fine Tree Regression and Gaussian Process
Regression (GPR) have been used. All of the mentioned models have per-
formed appropriately. All of these studies have been carried out to achieve
more accurate results in load forecasting, but which one is able to perform
better and are the models powerful enough to predict accurately for all load
data sets?

1.2 Contributions

Even though some studies in recent years have discussed different models
for short-term load forecasting [8, 23], the lack of a comprehensive study to
carry out a comparison between classic time series models, regression based
models and deep learning is obvious. In addition, time series must be used
correctly as input for machine learning models. In other words, some analysis
on data are essential to compile machine learning models. The contribution
of this thesis is that we focus on different models which are appropriate to
be used for load forecasting, and we also review some different methodolo-
gies to find out the most effective models for forecasting applications. Even
though various deep learning models have been introduced for load forecast-
ing in recent years, only some of them have succeeded to achieve state of

4



the art results. Moreover, this thesis consecutively proposes a new hybrid
parallel CNN-LSTM and LSTM-Dense neural networks to improve the ac-
curacy of load forecasting. Regarding the model’s architecture, it consists of
two different paths (CNN and LSTM). CNN path extracts the input data
features and LSTM path learns the long-term dependency within input data.
After passing through these 2 paths and merging their outputs, a fully con-
nected path combined with a LSTM layer has been implemented to process
the output to predict final load data. This thesis firstly aims to evaluate
various machine learning performance in STLF task while there is no exoge-
nous variables available. In other words, it tries to find out a way to carry
out STLF using just previous load data and compare all the results with
each other. After finding the best model for STLF task, the model will be
evaluated in different challenges including dealing with more complex data,
prediction in different time horizons and adding exogenous data as input. In
order to extend our study, all the models are implemented to forecast daily
and hourly ahead load consumption with using two highly aggregated data
sets, one of which is an hourly power consumption from the city of Johor
in Malaysia [25] and the other one is a daily electric consumption which is
collected from a power supply company in Germany. In addtion, a one-year
hourly load and weather data from a research building in France is used to
challenge the proposed model. To evaluate our models, we use root mean
squared error (RMSE) due to the ability of showing how much predicted
values spread around average and mean absolute percentage error (MAPE)
as it is able to present the accuracy of our models and R-Squared to show
the correlation between predicted results and actual value.

1.3 Thesis Overview

This thesis is organized as follows:

� Chapter 2 presents different machine learning techniques and explains
how these techniques can be used for STLF task. Besides, preprocess-
ing, mathematical analysis and visualization are discussed to provide a
better overview of load forecasting process for readers. Besides, a novel
hybrid deep learning model including LSTM, CNN and fully connected
which is able to extract the features and the long dependency within
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load data simultaneously is proposed in this chapter. Then, the ex-
perimental results of the application of the proposed model and other
machine learning techniques on two real data sets are compared with
each other.

� After figuring out which technique has the best performance in STLF
task, the selected technique is challenged with various tasks such as
prediction in different time horizons, one hour ahead forecasting of a
single building data and adding weather data as an external variable
to predict load data, in chapter 3.

� Finally in chapter 4, we conclude our work, highlight some challenges
and suggest future works.
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Chapter 2
Different Machine learning techniques
for STLF task

2.1 Part1

In this part different machine learning techniques and their advantages as
well as disadvantages are discussed. Load series data usually have particu-
lar attributes and so that before forecasting future load consumption, these
attributes must be studied and discussed as following.

2.1.1 Definitions

As it has been mentioned before, load consumption data are time series.
Thus, in order to forecast future load consumption some time series analysis
are needed. Time series have important attributes such as trend or noise. In
order to forecast future load consumption, some considerations of time series
are needed to be taken into account.

Trend: Some of time dependent data have a linear trend in long term. It
means there is an increase or decrease during the whole time, and this increase
or decrease may not be in same direction throughout the given period time.
However, in overall it will be upward, downward or stable. Load series data
are a good example of a kind of tendencies of movement.

Seasonality: Data with seasonality or periodic fluctuations in a certain
time repeat themselves. Many of time dependent data in a certain time have
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same behavior. These kind of data are called seasonal data, and studying
the seasonality within time series data is an important task.

Residuals (Noise): The combination of trend, seasonality and residual
create the time dependent data, i.e. if the data decomposes to seasonality and
trend, residuals (noise) will remain by subtracting both trend and seasonality.

Stationary: A stationary time series does not depend on observed time.
In other words, a stationary time series does not have a pattern to predict
the future by looking at it. If a data is stationary, it is easier to be processed
and predict the future load data.

Most load series data have all trend, seasonal, noise attributes simulta-
neously. For instance, Fig. 2.1 shows decomposition of a seasonal load series
data. Blue plot shows original data, red plot shows trend, black plot shows
seasonality of data and green plot is noise. A library from Python called
seasonal−decompose() has been used to decompose all the seasonal data in
this thesis. This function returns an object array including seasonal, trend
and residuals. There is a freq variable in this function which refers to the
frequency of the input data, and it is important to assign a number to this
variable. For instance, the freq is 24 for an hourly data.
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Figure 2.1: Original load series data and its decomposition. As this data is
an hourly data, it has every 24 hours seasonality.

2.1.2 Machine Learning Models

Due to the importance of STLF, many authors have discussed how an ac-
curate prediction of future load consumption can be obtained; thus, differ-
ent methods have been introduced for this purpose such as Auto-Regressive
Integrated Moving Average (ARIMA) [26], Seasonal Auto Regressive Inte-
grated Moving Average (SARIMA), Regression [27], Artificial Neural Net-
works (ANN) [28], etc. However, in recent years, more researchers have been
willing to use ANNs in load forecasting tasks since they are more flexible to
work. Table 2.1 shows some studies on deep neural networks with different
architectures in order to carry out a STLF with historical electric load con-
sumption of some cities. In the following, different models including ANN,
regression and classic time series analysis approaches will be discussed.
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Reference Model City(Dataset)
[25] FTS-CNN Johor, Malaysia
[11] CNN-RNN North Italy
[11] Parallel CNN-RNN North China
[25] LSTM Johor, Malaysia
[11] DNN-FNN New york, USA
[28] Seq2Seq New England
[28] GRU New England

Table 2.1: Different neural networks architectures that are widely deployed
for STLF with data sets from around the world. CNN: Convolutional Neu-
ral Networks, FTS: Fuzzy Time Series, LSTM: Long Short-Term Memories,
DNN: Deep Neural Networks, FNN: Feedforward Neural Networks, GRU:
Gated Recurrent Unit.

Auto regressive models

Auto regressive models predict the future value using the correlation be-
tween future value and past value. An important forecasting method, Box-
Jenkins methodology achieved significant results in time series forecasting.
This method combines Auto Regressive model (AR) with Moving Average
(MA), and the combined model is called Auto Regressive Moving Average
(ARMA). When a differencing order is added to this model in order to remove
non-stationary within data, it is called Auto Regressive Integrated Moving
Average (ARIMA) [29]. Some studies done by authors such as in [10] discuss
Box-Jenkins method for short-term load forecasting. However, some of these
methods have been modified to achieve more accurate prediction. [10] used a
modified ARIMA to forecast hourly load consumption and has been success-
ful to achieve better results compared to standard ARIMA. The authors used
load data and temperatures from operators in Iran and MAPE was between
1.5% and 2.0% while MAPE for standard ARIMA was higher (between 2.0%
and 4.5%). In the following, ARIMA models are discussed.

AR: In Autoregressive model, future variable will be predicted from the
past variables. This model has an order, p, which is the number of imme-
diately preceding values in the series that are used to predict the value at a
time t. AR can be formalized as following:

yt = β0 + β1yt−1 + β2yt−2 + ...+ βpyt−p + µt (2.1)
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where µt is the mean of series, βp are the parameters of models and yt is data
at time t.

MA: Moving Average is an indicator of technical analyst and used widely
to smooth noise based on lagging. The order q in MA models refers to q
previous errors. MA can be formalized as following:

Xt = θ0 + θ1εt−1 + θ2εt−2 + . . . + θnεt−q + εt (2.2)

where the θq are the parameters of models and εt are the errors until time t.
Integration: To predict future load consumption with ARIMA model,

a stationary time series should be used. There are different methods to
stabilize a time series such as logarithm or differencing and these operators
reduce changes in time series with trend elimination; in other words, they
convert a non-stationary data to stationary data. An ARIMA model usually
is written as ARIMA(P,D,Q) to show the needed orders which should be
used to achieve the best results from this model. D represents the number
of integration used, P and Q represent the orders of AR and MA part of
ARIMA. In order to find out the values of P , D and Q there are different
approaches. However, many experts suggest using Auto-correlation (AC)
and Partial Auto-correlation (PAC) plots to figure out the values of P and
Q. Nevertheless, first of all, it is necessary to find out what is AC exactly.
AC is the degree of similarity between a time series data and its lags (see Fig.
2.2) and it takes a value in range [-1,1]. If there is any seasonality in data,
remarkable spikes in AC plot are shown. For instance, Fig. 2.2 shows the AC
plot (or auto-correlation function (ACF) plot) of an hourly load consumption
from a smart building in France. This data is an hourly load consumption
data, and because of this hourly attribute a seasonal approach every 24 hours
can be seen in this figure.
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Figure 2.2: ACF plot for an example data. X axis shows number of lags, Y
axis shows amount of autocorrelation

Likewise, P or, in other words, the order of AR which is a part of ARIMA
model can be found by plotting PAC plot (or partial auto-correlation function
(PACF) plot). F. 2.3 shows the PAC plot for same data in Fig. 2.2 .

12



Figure 2.3: PACF plot of French data

However, there are some other tests to find the best values for D. In
order to figure out whether the data is stationary or not, two different tests
are proposed: Rolling statistic plot test and Dickey Fuller test. Rolling
statistic plot test is a chart analysis technique to examine collected data by
plotting Rolling Average. Figuring out the existence of trend in the Rolling
average is the primary objective. Provided there is not any trend, data is
determined as stationary. In Fig. 2.4, blue plot shows original data, and
red plot shows the rolling average of data. Since there is not any trend in
rolling average plot (red plot), the data is a stationary data. Besides, a
Dickey-Fuller test has been applied on this data. This test is based on null
hypothesis in which the nature of the series (i.e. Stationary or not) could be
determined by evaluating the p-value received by Dickey Fuller test. The p-
value is considered as a critical value for rejecting the null hypothesis. Thus,
the smaller p-value provides the stronger evidence to accept the alternative
hypothesis. In this example, the confidence interval is supposed 5%, and
after applying the test the obtained p-values is less than 0.05, so data can be
considered as stationary.
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Figure 2.4: An example of Rolling test which proves that data is stationary.

Hence, one way to obtain the best values for D, after any integration of
data, Rolling tests and Dickey-Fuller test can be applied and if these tests
prove data is stationary, there is no need to carry out another integration.
However, in case the results were different, it proves that data need more
integration. It must be said that in some cases achieving stationary data is
not possible. Therefore, this type of data cannot work with ARIMA models.

Seasonal ARIMA or SARIMA is another kind of statistical models which
is widely used in seasonal data cases. In terms of mathematics, in addition to
the same parameters with ARIMA, (P , D, Q), there are 4 other parameters
for the seasonal part of these models which are called p, d, q and m. Like
ARIMA, p represents the order of Autoregressive for seasonal part, d repre-
sents the order of integration for seasonal part and q represents the order of
Moving Average for seasonal part. In addition, m shows the time horizon
of seasonality. For example, for an hourly data, m will be 24 and for daily
data, it will be 7. Therefore, SARIMA formulation is usually presented as
SARIMA (P,D,Q)(p,d,q,m). The problem with ARIMA models is that these
models can work with stationary data only, and they are not able to perform
well with non-stationary data which is a significant limit for them.
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Exponential Smoothing

Exponential Smoothing (ETS) is a well-known time series forecasting models
for power systems. It can be used as an alternative to ARIMA models,
in addition to its ability to be used for STLF, MTLF and LTLF. It uses
weighed sum of past observation to make the prediction. Yet, the difference
between ETS and ARIMA models is that ETS uses an exponential decreasing
weight for previous observations [31]. It means recent observations have
higher weight than past observations and the accuracy of ETS depends on
some coefficients. The authors in [30] studied exponential smoothing for load
forecasting and they tried to use different coefficients. They used 6 different
data sets collected from China to evaluate their model. As it was assumed,
they achieved high range of MAPE for different values of coefficients. Eq.
2.3 indicates the formula of the simple Exponential Smoothing. Even though
there are various types of ETS, but the simple type of Exponential Smoothing
is the most famous one type. However in simple ETS models there is only
one hyper parameter (α) which is called damping ratio, and in some cases
α is not able to help the model to predict well. However the advantage of
using ETS instead of ARIMA as a statistical model is that there is no deal
for ETS models whether data is stationary or not.

Ft+1 = αAt + (1− α)Ft (2.3)

where Ft and Ft+1 indicate, predicted value in time t and t+ 1 respectively,
At indicates actual value at time t and α is the smoothing factor (0 ≤ α ≤ 1).

Linear Regression

Since many years ago linear regression has had an inevitable role in regression
based approaches. Some studies tried to use linear regression for time series or
specifically for load forecasting [33]. The author in [32] studied RGUKT, R.K
valley campus for STLF and achieved MAPE= 0.029 and RMSE=2.453. In
another study, in [9] is used with different linear regression models including
multiple linear regression (MLR), Lasso, Ridge for an hourly load data.

Linear regression is a statistical method to find the relation among vari-
ables. This method is useful to estimate a variable using influence parame-
ters. The simplest linear regression equation is as below:

Yi = β0 + β1Xi + µi (2.4)
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where Y is the dependent variable, β0 is interceptor, β1 is the slope, X is the
independent variable and µi is residual of the model which is distributed with
zero mean and constant variance. By increasing the number of variables, this
model is called multiple linear regression (MLR). In order to evaluate this
model, the Least Squared Error (LSE) technique is used. Our aim is that
to find the best coefficients to minimize LSE. LSE evaluates the model by
adding squares of error between two variables, which in our case, is between
actual values and forecasted ones. Equation (2.5) shows LSE formula:

LSE =
n∑

i=1

(Yi −Xi)
2 (2.5)

where X is predicted value, Y is the actual value.
In order to use linear regression for load forecasting, some parameters

such as temperature, humidity, time are needed to be used as independent
variables. Likewise, the load consumption data are used as dependent vari-
ables in linear regression models. With this approach, it is possible to use
linear regression as a model to forecast future load consumption. However,
there are some ways to forecast load consumption without using exogenous
variables. To carry out a prediction without exogenous data with linear
regression, lags can be used as independent variable for load forecasting.
Usually more than one lag is used as independent variable, so in this process
MLR is used instead of simple linear regression. AC plot is a useful tool for
time series analysis with linear regression. In this approach, those lags which
their auto-correlation values are more than a certain threshold can be used
as independent variables in linear regression. For instance, according to Fig.
2.2 lags [1, 2, 3, 24, 25] are chosen as independent variables with amount
0.6 for threshold. In total, in this model, lags are independent variables and
actual load consumption is the dependent variable. A remarkable disadvan-
tage of regression based models is that choosing the threshold for finding the
lags as independent variables is subjective, so they can not be selected as a
stable machine learning model for load forecasting.

Support Vector Regression (SVR)

Support vector machine is an approach which is used for classification and
regression problems. Due to the ability of this model in different problems
such as text or image analysis, SVM has become an interesting model among
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machine learning techniques [34]. For instance the authors in [8] studied
SVM for supervised learning methods. However, the first objective of SVM
was classification. Nonetheless, after a while this model has been extended
to regression problems and called support vector regression (SVR). In fact,
SVR has the same procedure as SVM with some differences. Our objective
in this model is to find the most appropriate hyperplane with minimum
acceptable error from training samples (see Fig. 2.5). In other words, the
best fit hyperplane has the maximum number of data points. In addition, the
main objective is to try to minimize the coefficients through L2-norm while
it is completely in contrast with LSE function in linear regression. As it can
be seen in figure 2.5, there is a decision boundary (two red lines) which have
ε distance with hyperplane. The accuracy of model depends on ε, so with
adjusting ε, the desired accuracy will be achieved. Assuming equation (2.6)
indicates the equation of hyperplane (in this case, it is a linear equation).

yi = wxi + b (2.6)

Therefore, the solutions and constraints are as equations (2.7)-(2.9):
Solution:

min
1

2
||w||2 (2.7)

Constraints:
yi − wxi − b ≤ ε (2.8)

wxi + b− yi ≤ ε (2.9)

where x is input, y is target and w is the weight. w SVR also can be used for
load forecasting problems. Authors in [35] proposed a new SVR for short-
term load forecasting. They evaluated their model using two data sets, ISO
New England and North-American Utility. They forecasted 24-hour ahead
and 1-hour ahead and achieved reasonable MAPE between 0.75% and 2.25%
for test and validation sets. In another study [36], authors applied SVR on
electricity load demand recorded every half an hour from 1997 to 1998. They
evaluated their model using exogenous variable (temperature) and without
it. They trained the model once with winter data and then with Jan-Feb
data. MAPE for different times and variables have been between 1.95%
and 3.5%. However, they concluded that it is better to predict future load
consumption without using temperature data, because it is difficult to predict
future temperature and that leads to higher error.
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Figure 2.5: An illustrative example SVR. Red line show the boundary lines,
black line shows hyper plane

Fully connected Neural Networks

Nowadays, numerous neural networks such as fully connected [37] ones have
been introduced. However, it is difficult to train a fully connected network
for load forecasting due to the over-fitting problem. Overfitting refers to
the production of analysis from a statistical model in which the model is
extremely trained. The problem is that when an overfitting happens, the
model learns very well the parameters but it is not able to predict well (i.e
weak generalization ability) [38]. Therefore, same approach with linear re-
gression used to predict future load consumption through fully connected
neural networks.

In neural networks, there are 3 different layers: input layer, hidden layer
and output layer. The depth of network depends on the number of layers in
the hidden layer. In fully connected neural networks, all the neurons in each
layer are connected to the neurons in the next layer; in other words, every
output of layers is used as input for next layer while each neuron has an
activation function (usually a non-linear function). Fig. 2.6 shows a simple
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network with just one hidden layer. Each neuron has a specific weight and for
every layer a bias term is considered. In total, outputs of layers are computed
as:

al = Wlhl−1 + bl (2.10)

hl = f(al) (2.11)

where l indicates layer number, f is activation function which in terms of
the most popular one, it can be referred to ReLU or Sigmoid functions (see
Fig. 2.7). W is weighted matrix of layer l, hl is output of activation function
and bl is bias term of layer l. It is obvious if W is r × 1 matrix, a and h
will have r× 1 dimension. Therefore, the transpose of W should be used. If
P (α) is considered as predicted output from neural networks, α represents
parameters of neural network and y is the actual value, for N input-output,
the loss function is:

L =
1

N
ΣN

i=1(yi − p(α))2 (2.12)

Figure 2.6: an one-layer neural network example
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Figure 2.7: ReLU and Sigmoid function

The primary goal is to optimize the parameters of neural network. For the
same purpose, the loss function must be minimized as much as possible. A
regularization penalty term is usually used to avoid overfitting (see equation
(2.13)).

L =
1

N
ΣN

i=1(yi − p(α))2 + Ω(α) (2.13)

where Ω(α) = λ||α||2, using norm-2 and a hyperparameter to control the
regularization strength. For the learning processing there are different algo-
rithms such as RMSprop, SGD, ADAM [39]. However, due to its ability of
working with non-stationary data, ADAM is the most appropriate choice for
load forecasting.

LSTM

Long short-term memory (LSTM) [40] is a special case of RNNs. RNNs are
based on control theory, and because of this reason they are used to pro-
cess sequence of inputs [41]. However, experimental results have proven that
RNNs due to the gradient vanishing problem are not able to perform well if
long time interval is used as input. In order to overcome this disadvantage, in
many recent researches RNNs were replaced by LSTM. In load forecasting,
many studies used LSTM and improved the accuracy of their approaches
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by finding the dependency within load series data. The authors in [42] used
LSTM network to carry out load forecasting in different time horizons includ-
ing 24 hours, 48 hours, 7 days and 30 days and compared LSTM with some
traditional models such as SARIMA and ARMA. The authors in [43] also
studied STLF by using an architecture including LSTM and fully connected
layers. Moreover, they used historical as well as prediction data as input for
their model. In addition to these particular research efforts of using LSTM
for load forecasting, LSTM has been widely used in various hybrid models
such as the one in [12].

In terms of LSTM structure, it consists of 3 gates, namely input gate,
output gate and forget gate. Each of these gates are determined to perform
a specific task. Equations (2.14) trough (2.18) show the formulation of LSTM
in details. Eq. 2.14 indicates the calculation inside of input gate. This gate
determines when Ct needs to be updated. Eq. 2.15 is related to forget gate
and it aims to find out if the state of cell Ct−1 must be forgotten or not.
The output gate, is called in some references control gate, determines that
to which part of cell Ct the output hy must be added [13].

i[t] = ψ(Li ∗ h[t− 1] + bi) (2.14)

f [t] = ψ(Lf ∗ h[t− 1] + bf ) (2.15)

O[t] = ψ(Lo ∗ h[t− 1] + bo) (2.16)

C[t] = f [t]� C[t− 1] + i[t]� (φ(Lc ∗ h[t− 1] + bc)) (2.17)

h[t] = φ(C[t])�O[t] (2.18)

where Li, Lf , Lo are the learning parameters, bi, bf , bo, bc are biased vectors,
φ represents hyperbolic tangent, likewise ψ represents Sigmoid function, f [t]
is forget gate, i[t] is input gate, O[t] is output gate, C[t] is the state of this
cell to encode information from the input sequence, h[t] is network output
and all of [t] symbol refers to time t and finally, � is used as a symbol for
Hadamard product. Fig. 2.8 displays LSTM structure.
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Figure 2.8: Inner structure of LSTM

CNN

CNNs are a big family of artificial neural networks [44] designed to filter and
extract the features of input data. They have been widely used in various
areas thanks to their ability to handle data with different dimensionalities.
For instance two dimensional and three dimensional CNNs are recognized as
a powerful network for performing image processing and classification [45,
46],as well as computer vision tasks [47]. Moreover, in recent years they have
been deployed in different other fields including Natural Language Processing
(NLP) [48], audio recognition [49], medical [50] and load forecasting [11].
Existing diversities among the load profiles using CNN networks may come
up with some difficulty. The complexity of human behaviours, working days,
time and weather data affect directly the load profiles [51]. To overcome the
complexity of load profiles, CNNs need to have huge amount of input data
as training set in order to learn all parameters.

From a technical point of view, CNNs are based on a discrete mathemat-
ics operator called convolution as shown in Eq. 2.19 shows the operation
calculation. In Eq. 2.19, Y is used as an output and x is the input. In
addition w represents the kernel. The i-th output is given as follows:

Y (i) = Σi,jx(i− j)w(j) (2.19)
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where j is ranging from 0 to k − 1 and then it makes Y to have n − k + 1
dimensions, and n is the input’s dimension.

Despite the fact that convolution operation is a simple mathematical for-
mula, CNNs work a little different. Fig. 2.9 shows the inner structure of this
neural networks family, and as it can be seen in this figure convolution filter
slides over the whole input data to extract the features. According to [52],
in convolution operation, firstly kernel and filter are convolved and the re-
sults of this operation is added to a bias term. This mathematical operations
is finished when a complete feature map is achieved. Equations (2.20) and
(2.21) show the complete convolution operation in artificial networks.

Y m
ij = sum(km ~ xfij) + bm (2.20)

fm = activation(Y m) (2.21)

where Y m indicates the output, m represents the m-th feature maps, i, j
indicate the vertical and horizontal steps of filter respectively, xfij is the filter
matrix, km represents the kernel matrix, bm is the bias term, and finally fm

is the activation function’s output. It must be said that Eq. 2.20 shows the
convolution operation formula while Eq. 2.21 shows the activation function
for the m-th output.
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Figure 2.9: 2D-Convolution and Maxpooling operations. In this instance
figure the filter size is [3,2], and for the sliding part the size is chosen [2,2]

In terms of the CNNs architecture there are usually convolutional layers,
pooling layers and fully-connected layers. Pooling layers are used after CNN
layers to carry out a down sampling operation while keeping the quality of
input data. This dimension-reduction operation is useful because it makes
the model prepared to learn the parameters through back-propagation algo-
rithm. Finally fully connected layer is used to perform the final prediction by
carrying out a combination of all features. However, according to the nature
of load data, this thesis focuses on one-dimensional CNN.

2.1.3 The problems of the discussed model

Statistical models, including ETS and ARIMA, and regression based models,
including linear regression and SVR, are two classic models which can be
used for load forecasting. However, they come with some disadvantages,
such as the limit of working with non-stationary data in ARIMA models,
to work with regression based models data should be pre-processed well and
being linearized which will take some time as well as increasing the error.
Besides, all kind of deep learning models are not able to perform accurate
and provide optimistic results, for instance fully connected networks can not
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extract the features of input data lonely so they need to be fed by some pre-
processed data, like linearized load data, to become able to predict future
load data. It is better to used fully connected networks combined with CNN
and LSTM models. However, most of the combined CNN-LSTM models, use
these two networks consecutively which leads to having more errors since the
extracted features from CNN will affect the LSTM units. Thus, the lack of a
powerful model which can process non-linear as well as non-stationary data
and provide more accurate results is completely obvious. Following part will
propose a new deep learning model.

2.2 Part 2

This part first introduce the PLCNet model to address all the discussed prob-
lems in the existing models, then the experimental results are discussed to
compare the performance of the different machine learning models in STLF.

PLCNet model

This thesis discusses a new methodology combined with CNN and LSTM
to carry out load prediction. Despite other efforts such as those reviewed in
the introduction that combined both approaches, the methodology presented
here is completely different. For instance the authors in [53] proposed a CNN-
LSTM model, so that CNN is first used to extract the features of input data
and then output from CNN is used as LSTM input. The problem within
this model is that extracted features affect the training of LSTM. In order
to solve this problem, in our proposed model LSTM and CNN networks are
used in two different paths without any correlation between those two paths.
Fig. 2.10 shows the frame-work of the proposed methodology. As it can be
seen input signals are firstly entered into two paths to be processed by LSTM
and CNN paths. These two paths extract the features as well as the long
dependency within data, and prepare the input data to make final prediction.
In order to carry out the final prediction, a fully connected path including
dense and dropout layer have been implemented, and finally predicted data
are compared by actual values. Since the CNN and LSTM networks are
implemented parallel, the model is called parallel LSTM CNN Network or
PLCNet.
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Figure 2.10: The framework of the PLCNet model

In the CNN path, capturing the feature of local trend is the main objec-
tive. In this path the data is convoluted through a Conv-1D layer within 64
units and filter size [2]. After convolution layer Maxpooling layer is used to
reduce the dimensionality of the data by down sampling while keeping its
quality. In the next layer, another Conv-1D layer, but within 32 units, is
implemented. The data in final layer continue through flatten layer. All of
the units are activated by Rectified Linear Unit (ReLU).

To capture the long-term dependency within data the LSTM path is used.
To start working with LSTM network, the data go through a flatten layer.
After passing through the flatten layer, input data is ready to be entered
as input for LSTM layer. An LSTM layer with 48 units and the activation
function is ReLU.

After passing through LSTM and CNN paths, the processed data is ready
to be entered into fully connected layer. As it was mentioned before there is
no correlation between two paths, thus in order to prepare data for predic-
tion, the outputs are concatenated in a merge layer. The merged data are
entered into a LSTM layer with 300 units and ReLU activation function to
learn the long-dependency within output data from two paths, and then the
output of LSTM layer will feed the next dense layer. After that a dropout
(30%) [55] layer is implemented to avoid any overfitting. Getting back to the
architecture of the PLCNet, two other dense layers are used to prepare the
data for final prediction. Since this model aims to carry out a prediction for
two data sets and various time horizons, the number of units in each dense
layer is different. However, all the existing units in fully connected path are
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activated by Sigmoid function. Concerning the fact that the PLCNet model
also must be evaluated for different time horizons,the number of units in
LSTM-Dense path can be different.

2.2.1 Experimental Results

To prepare the data sets for the considered models, city Johor data is divided
into 2 sets, training set which contains year 2009 load consumption and year
2010 load consumption used as test set. German data set also is divided,
so that 2012-2015 load consumption are used as training set and 2016-2017
are used as test set. All the models are implemented in Python. In order to
implement deep neural networks (DNN), we used Keras library with backend
of TensorFlow. In addition, Scikit-learn, Statsmodels and Pmdarima libraries
were used for regression and time series modeling and analysis.

2.2.2 Case studies

Two different data sets are used to carry out STLF. The authors in [25]
used load consumption of the city of Johor in Malaysia to predict day ahead
load consumption (hourly prediction) using a model which is a combination
of neural network and fuzzy time series. They used a new model which
was a combination of Fuzzy Time Series and CNN (FTS-CNN). They firstly,
through fuzzy logic, created a sparse matrix and then, through CNN ex-
tracted features and carried out STLF. They also tried other models includ-
ing SARIMA, different LSTM models, different probabilistic weighted fuzzy
time series and weighted fuzzy time series. But, their proposed model (FTS-
CNN) could achieve better results compared to other models for two different
years of Malaysia data and RMSE was 1777.99, 1702.70, respectively. This
data is from a power company in this city for years 2009 and 2010 and con-
sists of hourly electric consumption in MW. It has 17518 rows which show the
aggregated load consumption of these two years in this city. Fig. 2.11 shows
a Box plot of whole dataset which illustrates how the loads are distributed
among days of a week.
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Figure 2.11: the Box plot of load consumption during a week in Johor
(Malaysia)

Another data is Germany country-wide daily aggregated electric con-
sumption since 2006 to 2017 in GWh. This data is provided by Open Power
System Data (OPSD) and is used to predict day ahead load consumption.
This data has 2186 recorded electric consumption in Germany. Fig. 2.12
shows the Box plot of this data during a week.
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Figure 2.12: Box plot of electric consumption in Germany 2012-2017

Part of Malaysian data and German data have been decomposed into
seasonal, trend and noise. Fig. 2.13 and 2.14 show the original data and
their decomposition. Black plots in both figures show the seasonal part of
each data.
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Figure 2.13: Part of the decomposition of Malaysian data.
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Figure 2.14: Part of the decomposition of German data.

One of the main reasons these two data sets were used in this study
is that they are clean data sets which make users able to carry out load
forecasting since there is no missing value. In terms of outlier, there were
two outliers in Malaysian data set in which they were found easily and were
fixed, while German data set has got no outlier. These two data sets are two
highly aggregated hourly and daily data and the difference in the number
of recorded sample provides the opportunity that models will be tested with
high and low number of training data.

2.2.3 Data preparation

The acquired results from practical experiments proved that in order to work
with deep learning models, data should be prepared well [54] and results
showed pre-processing is more significant than training process. As discussed
before, in load forecasting even though some parameters such as holidays,
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temperature, humidity, etc. affect the model, our aim is to carry out STLF
using just previous load consumption data. Therefore, data must be prepared
specifically for each model. This thesis scaled the data between 0 and 1
through equation (2.22) which is written as follows:

Xsc =
X −Xmin

Xmax −Xmin

(2.22)

2.2.4 Evaluation Metrics

In order to evaluate models performance, root mean squared error (RMSE),
mean absolute percentage error (MAPE) and coefficient of determination
(R2) are used.

RMSE =

√√√√(
1

N
)

N∑
i=1

(Ai − Fi)2 (2.23)

MAPE =
100%

N

N∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣ (2.24)

R2 = 1− SSR

SST
(2.25)

SSR =
N∑
i=1

(Ai − Fi)
2 (2.26)

SST =
N∑
i=1

(Ai − Āi)
2 (2.27)

where Ai and Fi refer to actual and forecasted value of i-th data, N is the
data size, Ā is the average of actual data. In addition, SSR stands for sum
squared regression and SST stands for total sum of squared.

2.2.5 Implementation

After normalizing whole data sets, they must be prepared to be used as
input for machine learning models. So in first step all of them are converted
into a Numpy array to facilitate the training process. The type of model’s
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output is array and to visualize them, Matplotlib library is used. Finally from
scikit−learn library all the afforementioned metrics are called to evaluate the
model’s performance. Following the evaluation of the model’s performance
are presented.

The Evaluation of ARIMA

In ARIMA models, time series data are decomposed into m series to elim-
inate of hourly/daily seasonality within data. According to Fig. 2.13 and
2.14 there is a daily seasonality in Johor data (every 24 hours), and weekly
seasonality in German data (every 7 days). Therefore, instead of using simple
ARIMA, seasonal ARIMA (SARIMA) is being used to carry out STLF. In or-
der to find the parameters of SARIMA, Auto-arima function from pmdarima
library in python was used. This function tries to find the best number for
parameters through carrying out a comparison among different parameters.
For German data, ARIMA (5,1,0)(5,0,5,[7]) became our final models and
ARIMA (1,0,1)(2,0,0,[24]) achieved best results for city of Johor data. Fig.
2.15 and 2.16 illustrate predicted results for both data from ARIMA model.

Figure 2.15: Predicted and actual results from SARIMA, Malaysian data.
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Figure 2.16: Predicted and actual data from SARIMA, German data.

Even though results show that ARIMA is able to perform well for both
data sets, the problem with this technique is that it takes much computation
time since it needs to solve some complex mathematical formulas.

The Evaluation of Exponential Smoothing:

Exponential Smoothing (ETS) is an alternative approach for load forecasting.
Training and test sets of two data sets are applied to this model to carry out
t + 1 forecasting. Fig. 2.17 and 2.18 show predicted and actual test set for
both data. These plots prove that ETS fails to perform accurately in STLF.
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Figure 2.17: Predicted and actual data from ETS, Malaysian data.

Figure 2.18: Predicted and actual data from ETS, German data.

The other problem with ETS is that same as ARIMA, various parameters
through mathematical computation must be analyzed, and it leads to higher
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computation time.

The Evaluation of Linear Regression

For the linear regression model, the ACF plot is used to find out how many
lags can be used as linear regression variables (independent data). In Fig.
2.19, ACF plot of Malaysia is illustrated. For this data set, the threshold is
chosen 0.75. Lags [1, 2, 23, 24, 25, 47, 48, 49, 71, 72] become the independent
data and actual load consumption are used as targets (dependent data).
Scaled data is divided into training and test set. As 10 lags are used as
variables, the shape of train set is (8723,10) which started from the first day
of 2009 to the first day of 2010 and test set has the shape of (8723,10) from
first day of 2010 to the end of this year.

Figure 2.19: ACF plot of Malaysian data.

Fig. 2.20 shows predicted and actual data of load consumption for year
2010 in Malaysian data, and according to the plot linear regression has done
an accurate prediction.
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Figure 2.20: Actual and predicted results from linear regression, Malaysian
data.

However, for German data set, there are some differences. The first dif-
ference is that, 0.69 is for the threshold. Fig. 2.21 shows AC plot of German
data. According to this plot and threshold, lags [7, 14, 21, 28] are being used
as independent variables for MLR. The shape of training data is (1456,4) and
test set is from 2016 to end of 2017 with the shape of (702,4). As this data is
a daily data, the model predicted daily load consumption but as not good as
predicted results from Malaysian data. Fig. 2.22 shows actual and predicted
results from test set. While linear regression is able to predict hourly load
series accurately yet it fails to forecast accurately future load consumption
of daily load series. The difference in the number of lags as variables explain
well the reason why the results are not similar. The number of variables
(lags) for city of Johor data is 10, while it is 4 for German data. This point
is the main weakness of linear regression.
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Figure 2.21: ACF plot of German data to find out which lags should be taken
as variables for linear regression.
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Figure 2.22: Actual and predicted results from linear regression, German
data.

However compared to ARIMA and ETS, linear regression is a faster and
more accurate technique but choosing the threshold is almost subjective.
Another problem in terms of choosing threshold is that for those data sets
which do not have sufficient autocorrelation in their nature, linear regression
is not able to perform well. Because of these reasons this technique can not
be considered as a powerful tool for STLF task.

The evaluation of SVR

SVR the other regression based technique is another machine learning which
is evaluated in this section through applying same training and test sets
from linear regression section. There are various parameters which affect
SVR to perform well, and among all these parameters choosing the most
appropriate kernel is a critical task. For city Johor data, ’linear’ kernel
had the best performance compared to other kernels and for German data
’radial bias function (rbf)’ was used. Fig. 2.23 and 2.24 show the predicted
load consumption from SVR for both data sets, respectively. As it can be
seen from the figures, SVR forecasted future load consumption of Malaysian
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case with less accuracy compared to linear regression. Even tough, SVR
have achieved more accurate results than linear regression for German data,
this model also can not be a good candidate for STLF, because of having
same problem within linear regression. To work with these regression-based
techniques some reprocessing such as selecting a value for threshold which is
subjective is essential. In addition, as it discussed in the last section having a
reasonable amount of autocorrelation within data is another serious problem
with these models.

Figure 2.23: Actual and predicted results from SVR, Malaysian data.
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Figure 2.24: Actual and predicted results from SVR, German data.

The Evaluation of Fully connected Neural Networks

A fully connected network [56] which consists of only dense and dropout
layers is implemented in this section. To evaluate the network same training
and test set in regression based techniques is used here. This network has
3 hidden layers in addition to input and output layers. First layer is input
layer, and hidden layers consist of 27, 18 and 18 dense layers, respectively.
To avoid overfitting, the dropout technique is adopted in this network. This
model learns the parameters through ADAM optimizer in 20 epochs and
the size of each batch is 1. In addition, for whole layers, ReLU is used as
activation function. ReLU stands for Rectified Linear Unit and it works like
linear function with a difference which is its output for negative inputs is
zero. This attribute helps DNN models to avoid vanishing gradient problem.
Fig 2.25 and 2.26 show the results of DNN model.
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Figure 2.25: Actual and predicted results from fully connected, Malaysian
data.
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Figure 2.26: Actual and predicted results from fully connected, German data.

The results of this model is close to linear regression, and since the pre-
processing is same as regression based this model comes with same regression
based technique’s disadvantages. It proves that fully connected network can
not be our final choice for STLF task, however for more simple electric data
which are not complex this model can be used. However, neural networks are
widely used since they are able to process the data well and carry out a good
prediction, while in the discussed approach in this section there are a lot
of pre-processing and analysis same as regression based approaches. Thus,
there is not any extra advantages for this methodology to be used as load
predictor tool compared to regression based models.

The Evaluation of Vanila LSTM

In this thesis, the LSTM model [57] studies last 24 hours load consumption
and predict next hour consumption in Johor data, while in German data, in
order to predict next day load consumption, it studies last 7 days and predicts
next day data. In terms of architecture, it has one LSTM layer, while one
dense layer is used as output. Same with fully connected network in previous
section, the used activation function is ReLU. In addition, model is trained
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by ADAM optimizer for Johor data in 200 epochs and RMSprop [58] for
German data in 150 epochs. This model proves that LSTMs are a powerful
tool for STLF, due to the accurate results that our model has achieved as
well as their independency to auto-correlation of input data.

Figure 2.27: Actual and predicted results from LSTM, Malaysian data.
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Figure 2.28: Actual and predicted results from LSTM, German data.

The Evaluation of CNN-LSTM

As discussed before, CNNs are well-known networks for feature extraction.
LSTM also showed their ability to predict short-term load consumption.
Therefore, a hybrid model of CNN and LSTM can come with a number
of advantages. In order to work with this hybrid model, CNN layers should
be implemented first to apply historical data. In the next step, extracted
features from CNNs are used as input for LSTM layers. This section uses a
7-layer model to apply on the same test and training set which was used for
LSTM model in previous section. In layer #1 and layer #2, 1-D CNNs with
the ReLU activation function and filters=64 and kernel size=3 are imple-
mented. After that a Maxpooling and Flatten layer are used to prepare data
for LSTM layer. In layer #5, 200 LSTM neurons with ReLU activation func-
tion are implemented. To analyze the results and predict load consumption,
two Dense layers with 200 and 1 neurons are implemented while ReLU used
as activation function. Same with other DNN models ADAM optimizer has
the role to compile the model for Malaysian data and RMSprop optimizer is
using for German data. Fig. 2.29, 2.30 the results of forecasted data with

45



Figure 2.29: Actual and predicted results from CNN-LSTM, Malaysian data.

CNN-LSTM model.

The evaluation of PLCNet

As it mentioned before, PLCNet includes two different paths, CNN path and
LSTM path, and these two paths are fed simultaneously by historical load
data. According to the Fig. 2.31 and 2.32, the model has a good performance
for both data sets.

2.2.6 Results

The detailed experimental results are presented numerically in tables 2.2 and
2.3. As shown in these two tables, the MAPE and RMSE of the PLCNet
model are the smallest while the R2 score is the highest value. Regarding
the largest amount in error, the MAPE and RMSE of ETS have the highest
error value in both German and Malaysian data sets, where it has got 0.36
and 8.81 for RMSE and MAPE for Malaysian data and 0.316 and 33.63 for
RMSE and MAPE for German data. According to the MAPE and RMSE
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Figure 2.30: Actual and predicted results from CNN-LSTM, German data.

values, the short-term electric load forecasting accuracy of tested models in
descending order is as follows: the PLCNet, LSTM-CNN, LSTM, ARIMA,
linear regression, DNN, SVR and ETS.

Besides, it can be seen in the figures that PLCNet has performed far better
than other models, especially in German data set. Since the Malaysian data
is an hourly data, a lot of samples are available thus all the models can be
trained well, while German data is a daily one, and with less number of
samples all the model have been trained. This leads to let our model shows
its power more with an accuracy of 91.18%. After that LSTM has performed
well and its accuracy is 83.17%. However, the accuracy of PLCNet model for
Malaysian data is the highest, too, 98.23%, but there is not any remarkable
difference between the most accurate one and the second one which is LSTM-
CNN and its accuracy is 97.49%.

Regarding the run time in the tables, linear regression and SVR are the
fastest models in both German and Malaysian case. However, they are out-
performed by deep learning models. Besides, ARIMA and ETS are two com-
putational techniques which takes significant time for training. Even though
all deep learning models in the tables took much time to be trained compared
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Figure 2.31: Actual and predicted results from proposed model, Malaysian
data.

Model Performance metrics R2score Runtime(s)
RMSE MAPE

ARIMA 0.102 3.56 94.19% 451.12
ETS 0.36 8.81 90.06% 380.35

Linear Regression 0.092 2.335 95.50% 12.41
SVR 0.272 7.63 90.40% 10.23
DNN 0.128 3.62 95.38% 199.12

LSTM 0.097 3.11 96.63% 902.56
LSTM-CNN 0.053 2.43 97.49% 487.33

PLCNet 0.031 2.08 98.23% 92.47

Table 2.2: Models Performance for Malaysian data
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Figure 2.32: Actual and predicted results from proposed model, German
data.

Model Performance metrics R2score Runtime(s)
RMSE MAPE

ARIMA 0.201 18.40 80.04% 179.89
ETS 0.316 33.63 70.1% 167.03

Linear Regression 0.214 19.12 79.86% 4.32
SVR 0.247 22.41 74.39% 3.11
DNN 0.25 26.47 73.47% 80.35

LSTM 0.197 13.20 83.17% 431.11
LSTM-CNN 0.207 15.02 79.75% 180.22

PLCNet 0.061 5.120 91.18% 65.34

Table 2.3: Models Performance for German data
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Model Runtime per epoch(s)
Malaysian data German data

DNN 9.95 3.2
LSTM 4.61 1.87

LSTM-CNN 9.74 3.01
PLCNet 4.5 0.93

Table 2.4: The training time per epoch of deep learning models

to regression-based approaches, their acquired accuracy is acceptable. The
difference between the training time in deep learning models depends on the
number of epochs considered. Table 2.4 indicates the runtime per epoch of
each deep learning model for both Malaysian and German data sets. Accord-
ing to the tables 2.2 and 2.3, LSTM has the highest runtime but the main
reason is that this model needs more epochs to be trained and predict future
load. It can be seen that in table 2.4 LSTM is faster than LSTM-CNN and
DNN models in both data sets. However, PLCNet model results show that
this model not only has the highest accuracy and lowest error amount, but
also it is the fastest model between deep learning models where the runtime
per epoch in Malaysian data is 4.5(s) and in German data is 0.93(s).

Therefore, it is proven that the novel hybrid STLF algorithm proposed in
this thesis is practical and effective. Although LSTM has good performance
when dealing with time series, its accuracy in the case of our data set which
does not have large amount of samples, is not good enough. Therefore,
the Vanila LSTM is not suitable for this kind of prediction. Finally, the
experimental results show that the proposed hybrid network provides the
best results in electricity load forecasting.

Statistical Analysis

A common approach to compare the performance of the machine learning
models is that to use statistical methods to select the best one. This section
aims to do a comparison between PLCNet and LSTM results since both of
them achieved acceptable results in both German and Malaysian cases. In
order to become able to compare these two models through statistical analy-
sis, more available data is needed, so these two models (LSTM and PLCNet)
were run 10 times to provide more result data. In terms of visualization,
Fig. 2.33 and 2.34 show the results histogram of PLCNet and LSTM for
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Figure 2.33: Histogram of PLCNet model for Malaysian data

Malaysian data set, respectively.
To perform statistical analysis, in this section t-test is used to understand

the achieved results are just some stochastic results or they are trustful.
This analysis works based on null hypothesis, and the null hypothesis is that
two models (PLCNet and LSTM) are similar to each other and there is no
difference between them while the alternative hypothesis is that two models
perform differently. The considered significance level is 5%, therefore if the
acquired P-value is less that 5%, the null hypothesis can be rejected and it
can be conclude that the PLCNet model performs better than LSTM model.
After carrying out some statistical analysis the obtained P-value is 0.0411 (
or 4.11%) which is less than 5%.
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Figure 2.34: Histogram of LSTM model for Malaysian data.
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Chapter 3
Validation of the proposed model

According to the results from last chapter, the proposed model has proven
that it can carry out STLF task accurately. This chapter aims to challenge
the proposed model in terms of the model’s performance in different time
horizons, working with single building data and evaluate the model’s perfor-
mance in the existence of weather variables. However, a modification in the
architecture of the proposed model should be added to use the weather data
as an input data.

3.1 Different Time Horizons

Previous sections discussed some machine learning techniques to predict next
time step load data consumption. In other words, at time t they predicted
the load data at time t + 1. Since the Malaysian data is an hourly data
and German data is a daily one, all the models predicted next hour load
of Malaysian data and next day load of German data. This section aims
to challenge the proposed model in different horizons. In Malaysian case,
the proposed model will predict next 24 hours, next 48 hours and next 10
days load data, and in German case it will predict next 7 days, next 10 days
and next 30 days. In terms of evaluation, RMSE and R2 scores are the two
metrics used to evaluate the model’s performance. Because of the existing
soft computing errors the model is tested 5 times for each horizon and the
average value is calculated. Same as mentioned before, the model uses year
2009 as training set and year 2010 as test set in Malaysian data, and years
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Figure 3.1: 1 day ahead results using the proposed model, Malaysian data

2012-2015 are used as training set and 2016-2017 as test set in German data
set.

3.1.1 Malaysian Case

Since in previous sections, the prediction of next hour load data through the
proposed model was discussed completely, this section studies next one day,
two days and ten days load data in the following.

The Malaysian data is an hourly data, so to predict one day ahead load
data next 24 time steps should be predicted and it leads to require a subtle
modification in the model’s architecture. The last layer of the model which
is a dense layer will have 24 neurons to provide next 24 hours prediction.
To predict one day ahead data, the model looks back to 72 hours ago data
firstly to train the algorithm within data and then it will predict next 24
hours. Figure 3.1 shows the results of the prediction.

In order to forecast next two days load data, next 48 time steps should
be predicted so another modification is needed to make the model able to
forecast next days load data. Thus, the model will have 48 neurons in its last
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Figure 3.2: 2 days ahead results using the proposed model, Malaysian data

layer (which is dense layer). In terms of the training procedure, the model
looks back to 4 days ago (4days × 24h) to be trained and then it predicts
next 2 days. Figure 3.2 illustrates the prediction and actual load data.

This section aims to predict next ten days load data which is a MTLF task
but is a big challenge for the model. Since the samples have been recorded
hourly in Malaysian data the model must predict 240 values (10days× 24h)
therefore there are 240 neurons in the last layer. In training process, the
model looks back to ten days ago and predicts ten days ahead load data.
According to figure 3.3, the results show that the proposed model has an
acceptable performance in this task where the results are close to next hour,
one day and two days ahead outputs.

Results

Tables 3.1 and 3.2 show the results of next days prediction. However, in order
to have a comprehensive knowledge in terms of the model’s performance, the
results of the next hour prediction are added to these tables again.

Even though forecasting future load data in longer time horizons is a chal-
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Figure 3.3: 10 days ahead results using the proposed model, Malaysian data

Model Test-1 Test-2 Test-3 Test-4 Test-5 Average
Next hour 98.06% 98.10% 98.12% 98.19% 98.23% 98.14%
Next day 97.09% 97.60% 97.56% 97.63% 97.89% 97.55%

Next 2 days 96.80% 96.20% 96.31% 97.01% 96.88% 96.64%
Next 10 days 94.10% 93.89% 94.25% 94.35% 94.24% 94.16%

Table 3.1: The experimental results of Malaysian data in terms of R2 score.

Model Test-1 Test-2 Test-3 Test-4 Test-5 Average
Next hour 0.0341 0.0337 0.0335 0.0328 0.0316 0.0331
Next day 0.0412 0.0374 0.0382 0.0376 0.0355 0.0379

Next 2 days 0.0410 0.0413 0.0401 0.0387 0.0398 0.0401
Next 10 days 0.0609 0.0590 0.0582 0.05476 0.05477 0.0575

Table 3.2: The experimental results of Malaysian data in terms of RMES.
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Model Vanila LSTM CNN-LSTM Proposed model
RMSE R2 score RMSE R2 score RMSE R2 score

Next hour 0.097 96.63% 0.053 97.49% 0.033 98.14%
Next day 0.121 95.21% 0.069 96.62% 0.0379 97.55%

Next 2 days 0.189 92.65% 0.0782 94.31 % 0.0401 96.64%
Next 10 days 0.197 92.03 % 0.082 92.88% 0.0575 94.16%

Table 3.3: The comparison table for Malaysian data

lenging task, according to these tables, there is almost 4% difference between
the accuracy of the next hour prediction and the next ten days prediction
which is an acceptable difference and the model has a good performance in
Malaysian case.

Likewise, in order to make sure the proposed model has a better perfor-
mance rather than two other discussed deep learning models including Vanila
LSTM and CNN-LSTM table 3.3 has been provided to compare the results
of all these models in different time horizons in terms of RMSE and R2 score.

3.1.2 German Case

The other case for model’s evaluation is German data discussed in previous
sections. Same as Malaysian data, the model is challenged in other horizons,
but for this case it predicts next seven day, next ten days and next 30 days
load data.

The model looks back to seven days ago to perform a seven days ahead
prediction and to do this task it needs seven neurons in its last layer. Figure
3.4 shows the result of using the proposed model to forecast next seven days
load data.

This section discusses the results of ten days ahead prediction. As the
model is supposed to predict next ten days, there are 10 neurons in the last
layer of the model. Besides, since forecasting next days data is a bit harder
than next seven days, the model looks back to 10 days ago data to understand
the algorithm within load series better. The results are shown in figure 3.5.

If the proposed model is being able to carry out a LTLF task too, it can
be introduced as a well-performance tool in load forecasting applications. To
evaluate the performance of the model in LTLF task, this section aims to
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Figure 3.4: 7 days ahead results using the proposed model, German data

Figure 3.5: 10 days ahead results using the proposed model, German data
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Figure 3.6: 30 days ahead results using the proposed model, German data

predict next 30 days German load data, and the results are shown in Fig.
3.6. Like previous sections, in terms of the model architecture there are 30
neurons in the last layer of the model to predict future load data.

Results

So far, the illustrative results of German data set have been shown, and
in the following the numerical results are available. Besides, the one day
ahead prediction results are available in tables 3.5 and 3.4 to demonstrate
the comparison between different horizons for same data sets. These two
tables indicate that there are not a lot of differences between one day ahead
prediction and ten days ahead prediction, but it is big challenge for the model
to predict next 30 days load series, because the average accuracy for the next
day prediction is 91.31% while it is 82.49% for next 30 days prediction. The
problem is that the German data is not a big data set and it has only 2186
recorded samples, so it is difficult for model to learn all the parameters well
while it is looking back 30 previous steps and predict next 30 steps.

Same as the Malaysian data, a comparison table (see table 3.6) is provided
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Model Test-1 Test-2 Test-3 Test-4 Test-5 Average
Next day 90.76% 92.26% 91.18% 90.47% 91.88% 91.31%

Next 7 days 89.75% 89.92% 89.63% 88.82% 89.57% 89.53%
Next 10 days 89.02% 89.06% 89.59% 89.26% 88.99% 89.18%
Next 30 days 83.05% 83.25% 82.27% 81.84% 82.08% 82.49%

Table 3.4: The experimental results of German data in terms of R2 score

Model Test-1 Test-2 Test-3 Test-4 Test-5 Average
Next day 0.0659 0.0606 0.0622 0.0686 0.0612 0.0637

Next 7 days 0.0741 0.0734 0.0753 0.0787 0.0745 0.0752
Next 10 days 0.077 0.0768 0.0748 0.0733 0.0788 0.0761
Next 30 days 0.132 0.124 0.155 0.183 0.16 0.117

Table 3.5: The experimental results of German data in terms of RMES

for German results to prove that the proposed model not only has a better
performance in one step ahead prediction, but also it can perform better than
other deep learning models in different time horizons.

Model Vanila LSTM CNN-LSTM Proposed model
RMSE R2 score RMSE R2 score RMSE R2 score

Next day 0.207 79.75% 0.197 83.17% 0.063 91.31%
Next 7 days 0.215 78.88% 0.201 80.87% 0.0752 89.53%
Next 10 days 0.231 78.02% 0.209 79.65 % 0.0761 89.18%
Next 30 days 0.312 74.14 % 0.279 76.88% 0.117 82.49%

Table 3.6: The comparison table for German data
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3.2 Single Building Data

So far, all the technical parts have been evaluated by deploying highly aggre-
gated data from two cities in Germany and Malaysia. Usually it is mentioned
that highly aggregated data are not very complex data, so it is not difficult
for machine learning models to learn from these data. But, applying a sin-
gle building electric data can be a big challenge for the models to learn all
the parameters since this type of data has unpredictable behaviours. In the
following, a single building data set from a research lab in France is used.
This data set includes 8784 samples which are hourly electric load data of
this building in year 2016. Fig. 3.7 shows the illustrative plot of electric
load data of whole data set. It can be seen that this plot does not follow a
repeatable pattern and air conditioning causes this unexpectable behaviour.
Decomposing the data into seasonal, trend and noise have been a helpful
technique for better understanding. Fig. 3.8 shows part of French data de-
composition. According to the plot, as the data consists of hourly recorded
samples there is a 24 hour seasonality within data. Understanding the sea-
sonality and overall trend of data set is a leading point and it can help to
find out how the data must be processed.
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Figure 3.7: The electric load plot of French data in year 2016
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Figure 3.8: Part of decomposition plot of French data

Likewise, to have a comprehensive knowledge of this data, the boxplot of
French load series is shown in Fig. 3.9.
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Figure 3.9: Load boxplot, French data

The main objective of this section is predicting next hour load data.
Three different approaches are being used for this purpose; first training the
model with 3 months data and then testing it on next three months for the
whole year, and the second approach is to divide the data to two halves; and
finally data is divided to 9 months as training set and 3 months as test test.
In the second method, the model is trained by data associated to half of the
year and then it is tested by the other half.

3.2.1 3-Month approach

In this approach, first model is trained by Jan-Mar load data and then is
tested by Apr-Jun. This redundancy is applied for the whole year but the
only important point is that after using Oct-Dec batch as training set, the
model is tested by the Jan-Mar of year 2016 batch. All the illustrative results
are shown in Fig. 3.10-3.13.
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Figure 3.10: The results of first cycle of French data
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Figure 3.11: The results of second cycle of French data
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Figure 3.12: The results of third cycle of French data
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Figure 3.13: The results of fourth cycle of French data

As it can be seen in Fig. 3.12, the model has some problems to predict
in this time region. The problem is that after training process, the model
is faced with unpredictable behaviours in testing process, so predicting this
unexpectable behaviours specially the peak values is tough. It can be referred
that the 3-Month approach may come with some disadvantages and less
accurate results.

3.2.2 6-Month approach

While in the last approach the model was trained and tested 4 times, there
are only 2 times training and testing process in this approach. First the
model is trained by the first half of the year (Jan-Jun) and then is tested
by the other half (Jul-Dec). In the second try, the model is trained by the
second half of the year and is tested by the first half. Fig. 3.14 and 3.15
illustrate the results of the two halves, respectively.
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Figure 3.14: The results of first half of French data
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Figure 3.15: The results of second half of French data

3.2.3 9-Month approach

Same as 6-Month approach data is divided into two parts with a subtle
difference in this section. The training set includes first 9 months (Jan-Sep)
load data and test set is rest of data set (Oct-Dec) once, and in the second
try, the training set consists of Apr-Dec and the model is tested by Jan-Mar
data. This approach helps the model to understand the behaviour of the
data set to have a better prediction. Fig. 3.16 and 3.17 show the illustrative
results of this approach.
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Figure 3.16: The results of first half of French data
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Figure 3.17: The results of second half of French data

3.2.4 Results

By taking look at Fig. 3.10-3.15 it can be concluded that the 6-Month
approach has a better performance. Table 3.7 provides the numerical results
to carry out a comparison between those approaches. According to the table,
the average accuracy of 6-Month approach is 77.53% and this value from
3-Month approach is 68.46%. Likewise, RMSE of 6-Month approach and 3-
Month approach are 0.0645 and 0.0713 in which regarding the nature of error
a value closer to zero is a better result. Therefore, 6-Month approach has
a better performance than 3-Month approach because in 6-Month approach
the model has more information to be trained. However, when the results
of 6-Month approach is compared to 9-Month approach it can be concluded
that 6-Month approach is not good enough because the average RMSE and
accuracy of 9-Month approach are 0.0547 and 84.84% which are far from
better than to other approaches results. In total, since this data is just one
year data and also there are a lot of unpredictable behaviours in this data
set, the results show that the model is an appropriate tool for working with
these complex data in STLF tasks.
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Time RMSE R2 Score
3-Month approach

Jan-Mar 0.0496 80.9%
Apr-Jun 0.117 57.87%
Jul-Sep 0.1277 56.31%
Oct-Dec 0.063 78.76%
Average 0.0713 68.46%

6-Month approach
Jan-Jun 0.0679 78.71%
Jul-Dec 0.0611 76.35%
Average 0.0645 77.53%

9-Month approach
Jan-Sep 0.0585 83.3%
Apr-Dec 0.0509 86.39%
Average 0.0547 84.84%

Table 3.7: The experimental results of French data

3.3 Weather Data

According to [62] exogenous variables can affect the results of prediction in
different ways. Usually, adding more variables to a model leads to increase
the accuracy of the model, on the other hand if these variables are not added
appropriately they may confuse the mode and therefore reduce the accuracy
of the model. Regarding our cases, this section studies the impact of the
weather information on two discussed data sets, Malaysian and French data.
As it is discussed before, Malaysian is a highly aggregated data while the
French one is a single building data. Adding temperature to these two dif-
ferent data sets and evaluating proposed model with both of them, is a good
way to answer these questions; Does weather information improve the accu-
racy for aggregated as well as single building data? Is proposed model able
to carry out an accurate prediction by adding temperature data? Adding
temperature to a deep learning model is important or deep learning model
can predict well without using it?

Before getting started to add temperature data to the model, it must be
considered that the model needs to have some modification in its architec-
ture to be able to process the weather data. Proposed model’s architecture is

73



shown in 2.10, but it needs to be modified in order to use the weather data as
input data. Thus, a fully connected path including dense and reshape layers
are added to the model to process the weather data. In order to add temper-
ature as an external variable to the model, some pre-processing is needed.
Same as electricity data, temperature data should be scaled first and then
are divided into batches with same length and size of electricity batches. For
example, if the model is looking back to 72 previous time steps electricity
data, for the weather data at the same time the model should look back previ-
ous 72 time steps and process the weather and electrical data simultaneously
to forecast future load consumption. So the added path is called weather
path, and model has another path in addition to LSTM and CNN paths.
The processed data in LSTM, CNN and weather path are concatenated in a
layer, and then these merged data are processed by two other dense layers
to predict future load data. Fig. 3.18 illustrates the new architecture of the
model for using weather data as an exogenous variable.

Figure 3.18: The new architecture of PLCNet model
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3.3.1 Malaysian Case

Malaysian data includes load series and weather data, in which previous
sections discussed only load data. In this section, weather data is added to
the model to evaluate the accuracy of prediction in the existence of weather
and find out can this information have positive effect or not. Same as load
series, hourly weather samples for years 2009 and 2010 are available. In
addition, Fig. 3.19 shows the boxplot of weather data for two years.

Figure 3.19: Weather boxplot, Malaysian data

In term of data preparation, same as the load series, weather data through
equation (2.22) is scaled between 0 and 1 to be used as an exogenous variable.
Fig. 3.20-3.23 show the actual and predicted results with using temperature
and without using it in different time horizons.
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Figure 3.20: Predicted results for one hour ahead prediction, Malaysian data
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Figure 3.21: Predicted results for one day ahead prediction, Malaysian data
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Figure 3.22: Predicted results for two days ahead prediction, Malaysian data
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Figure 3.23: Predicted results for ten days ahead prediction, Malaysian data

3.3.2 French Case

French data is another hourly data which includes load and weather data
of year 2016. This section focuses on discussing the weather information
of French data. Fig. 3.24 shows the boxplot of weather data for whole
year 2016. Scaled Weather data is used as an auxiliary data to improve the
accuracy of proposed model (Fig. 3.18). Since in section 3.2, it has been
concluded that the 9-month approach is better than 3-month approach, the
model predicts future load using historical load and weather data through
9-month approach. Fig. 3.25 and 3.26 illustrate the prediction results for
first and second cycles of the year, respectively.
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Figure 3.24: Weather boxplot, French data
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Figure 3.25: First cycle of the year prediction, French data
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Figure 3.26: Second cycle of the year prediction, French data

3.3.3 Results

This section provides the numerical results of using temperature as an ex-
ternal variable, and compares the results before using them and after that.
Correlation between historical load and weather data is an important con-
cept which should be studied. The correlation between the information in
Malaysian data is 0.56 while it is -0.08 in French data which explains well
why the weather data has a better impact on the results in Malaysian data
compared to French data. In fact, negative correlation is not the problem,
the main problem is that the correlation is not high enough in French data.
Table 3.8 and 3.9 indicates the Malaysian and French results in terms of
RMSE and R2 score as well as runtimes. By taking look at these numbers,
it can be figured out that weather data improved accuracy and reduced the
error which are the two primary goals of using temperature data.
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Time RMSE R2 Score Runtime(s)
Next hour 0.0336 98.14% 92.47

Next hour with temp data 0.0289 99.15% 210.62
Next day 0.0379 97.55% 289.13

Next day with temp data 0.0302 98.2% 383.9
Next 2 days 0.0401 96.64% 602.11

Next 2 days with temp data 0.0385 97.26% 795.26
Next 10 days 0.0575 94.16% 726.54

Next 10 days with temp data 0.0492 96.05% 2821.08

Table 3.8: The experimental results of Malaysian data after adding temper-
ature

As it can be assumed the weather data helps the model to be trained
better, where it improved the model’s performance in all the time horizons
almost 1%, as well as it reduces all the RMSE values remarkably. Whereas,
adding temperature has some bad effect on training process runtime. Ac-
cording to the runtime column in table 3.8, runtime has been increased sig-
nificantly, especially in 10 days ahead prediction where it launched from
726.54(s) to 2821.08(s) which is a big difference.

Time RMSE R2 Score Runtime(s)
First 9 months 0.0585 83.3% 181.2

First 9 months with temp data 0.0579 83.44% 260.18
Second 9 months 0.0509 86.39% 120.06

Second 9 months with temp data 0.0501 86.62% 165.73

Table 3.9: The experimental results of French data after adding temperature

According to the table, the accuracy is improved after adding tempera-
ture data where for both halves the accuracy is more than 80%. However,
same as Malaysian data, adding temperature causes higher runtime. Finally,
since the 9-Month approach and adding weather data have proven that they
can achieve better results, these methods are used in French case study to
predict one day ahead load data. To carry out this prediction, the model
looks back to 3 days ago load and weather data and predicts next 24 hours
load. The model is trained by Jan-Sep data and is tested by Oct-Dec informa-
tion. The achieved results are as following; RMSE=0.0613 and Accuracy=
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79.87% which are completely reasonable regarding the low number of train-
ing samples and the complexity within data. Fig. 3.27 shows the illustrative
results.

Figure 3.27: Part of next day prediction results, French data

In summary, after studying the results of both data sets it is obvious that
the advantages of adding temperature to the model outweights its disadvan-
tages, because higher accuracy is more important than speed of the model
in load forecasting.
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Chapter 4
Conclusion

With smart grids on the rise, the importance of short-term load forecasting
highly increases. To predict the future load consumption, some factors such
as weather can affect the results. The lack of future weather information
is a challenging problem for load forecasting. In this paper, the previous
consumption was used as a parameter to predict the load one step ahead.
Some non-deep learning approaches like linear regression or ARIMA have
proven that they are powerful tools for accurate load forecasting. However,
regression-based approaches come with some disadvantages. In order to use
these models, such as SVR and linear regression, lags are used as parameters
through auto-correlation (AC) values. As the threshold value is subjective,
the number of lags as parameters for regression-based models can be differ-
ent. Fully connected networks also use the same approach as regression-based
approach. Because of the reason that there is not a constant threshold to find
those lags which are suitable to be used as variables, this procedure (finding
lags through AC plot) may lead to higher errors. ARIMA and ETS also are
two well-known time series analyses approaches. However, some parameters
need to be tuned to work with these methods. This procedure needs nu-
merous trials to find the best values for them. Furthermore, in time series
methods data must be analyzed to find out if they are stationary or not. In
contrast, LSTM can achieve reasonable results whether data is stationary
or not. CNN-LSTM also is a hybrid model, which is used in various load
forecasting studies. This proposed model achieves the best results between
all the discussed models where the accuracy increase from 83.17% to 91.18%
for load data a German case study. Likewise, for a Malaysian data set, the
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obtained accuracy from the model is 98.23% which is very high for time se-
ries results and the RMSE is very low at 0.031. In summary, the proposed
model improves the results remarkably for the German data set. Besides,
while all the models have an acceptable performance in Malaysian data, the
most accurate results come from the proposed model. In terms of runtime,
the proposed model is faster than other deep learning models to train both
German and Malaysian data. This improvement and highly accurate results
as well as fast training process prove that this novel hybrid model is a good
choice for STLF tasks. The proposed model was also evaluated in different
horizons, and it performed better than other deep learning models. The ac-
curacy of the proposed model in Malaysian experiment for different horizons
is between 94.16% and 98.14%, and in German data it is between 82.49%
and 91.31%, which are acceptable results compared to the other deep learn-
ing model’s results. This model was also challenged to work with a complex
data set from a research building in France including hourly load and weather
data. Before adding temperature to the model and only using previous load
series the accuracy of next hour load has achieved almost 77%, but after
using weather data this accuracy was raised up to around 80%. Likewise, for
Malaysian data case study this approach was studied, and the results were
completely improved where for one hour ahead the achieved accuracy is more
than 99%. All of aforementioned results are proofs that the proposed model
is a powerful model for load forecasting.

Nowadays, the interest of using artificial neural networks for electric load
forecasting is winning ground in research and industries, especially when de-
ployed in IoT applications. According to the discussed results, deep learning
models can be a good choice for IoT compared to other techniques, thus fur-
ther work could be devoted to use deep learning models such as the proposed
model in this paper for online load forecasting tasks.
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