

Application of machine learning and deep learning methods for load prediction in institutional buildings

By Sahar Javadian

Supervisor Prof. Ursula Eicker

Department of Building, Civil and Environmental engineering

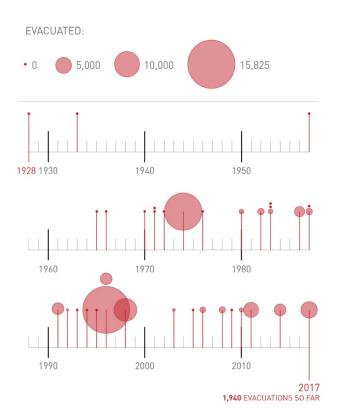
December 21, 2020 Montreal

Outline

- 1. Problem statement
- 2. Literature review
- 3. Objectives
- 4. Research tasks
- 5. Case study description
- 6. Data analysis
- 7. Load prediction results
- 8. Conclusion
- 9. Future Works

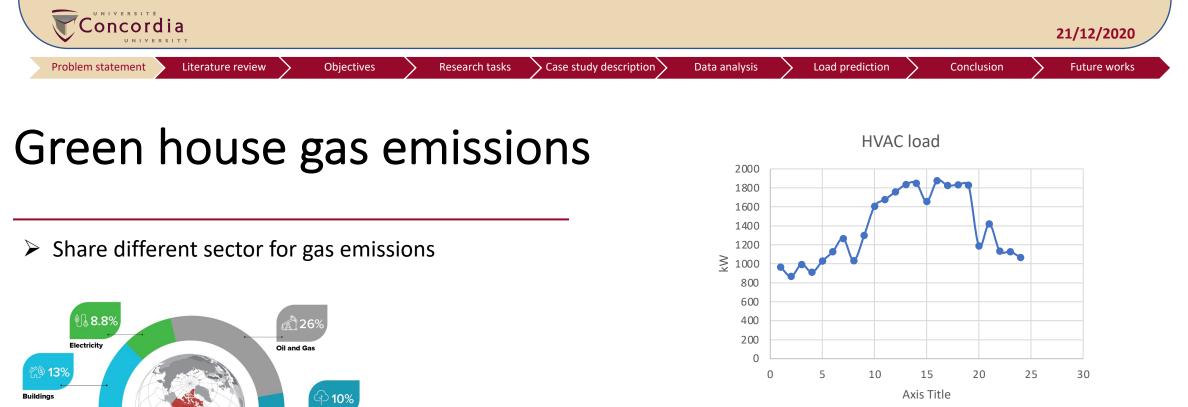
Climate change

History of floods in Quebec



https://www.nationalobserver.com/2020/09/21/opinion/foundations-aim-help-build-better-canadagreen-recovery

https://www.cbc.ca/news/canada/montreal/quebec-floods-history-timeline-1.4105530



Reduce energy usage in building sector by:

https://www.canada.ca/en/services/environment/weather/cl imatechange/climate-plan/reduce-emissions.html#shr-pg0

Peak load shaving

5.8%

Waste & Others

Jun 11%

Heavy Industry

• use renewable systems

For these two goals we need to analysis the load and to know future load

G2V

Load Levelling

Peak Load Shaving V2G

Time (hours)

https://www.researchgate.net/figure/The-concept-of-peak-load-shaving-and-load-

levelling fig3 319183694

Machine learning vs Deep learning

Load prediction by machine learning method:

- Regression models
- Neural networks (NN)
- Support vector machine (SVM)
- decision tree

Deep learning models such as:

CNN and LSTM

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Literature review

Regression

	Year	authors	Research focus	methods	Results
1	2019	Anand et al	to approximate a factor known as "energy use per son	Deep neural network and Multiple nonlinear regression	DNN outperformed MNLR.
2	2015	Fumo and Biswas	household energy usage prediction	categories of regression	Regression is easy and efficient model
3	2015	Qiang et al	prediction of cooling load	MLR	MLR has low accuracy in comparison to other models such as ANN
4	2011	Nazih et al	load prediction of one-year time horizon.	linear, polynomial, and exponential	linear and polynomial were at the almost same level.
5	2007	Tso and Yau	predict household energy consumption (Kwh)	regression model, decision tree, and neural network	The effect of each parameter in energy consumption varies in winter and summer analysis.

Literature review

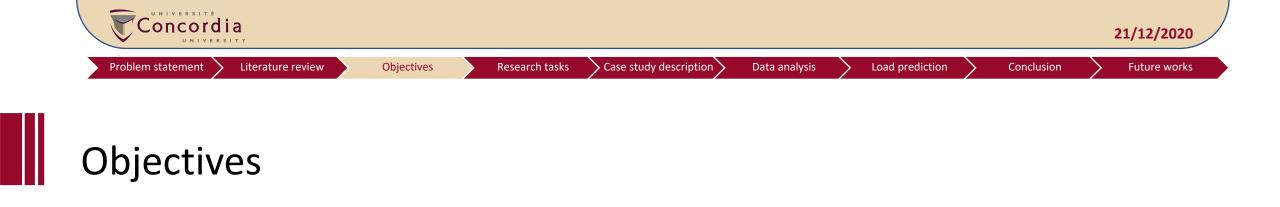
Deep learning methods

	Year	authors	Research focus	methods	Results
1	2019	Wang et al	Next week load prediction	LSTM, MLP, RF	LSTM performed better most of the time
2	2017	Yildiz et al	Forecasting of electrical load	ANN, SVR and MLR	MLR cannot be good as other ML algorithms. the bigger scale prediction was more successful
3	2017	Kong et al	short-term load predication – Comparison of LSTM with other models	LSTM	LSTM showed superiority
4	2016	Marino et al	Forecasting of electrical load	two types of LSTM (standard LSTM and sequence to sequence LSTM)	LSTM performed poorly on the one-minute dataset, but S2S LSTM outperformed on both datasets
5	2011	Feilat and Bouzguenda	peak load of each month	NN and Linear regression	NN method performed better than linear regression

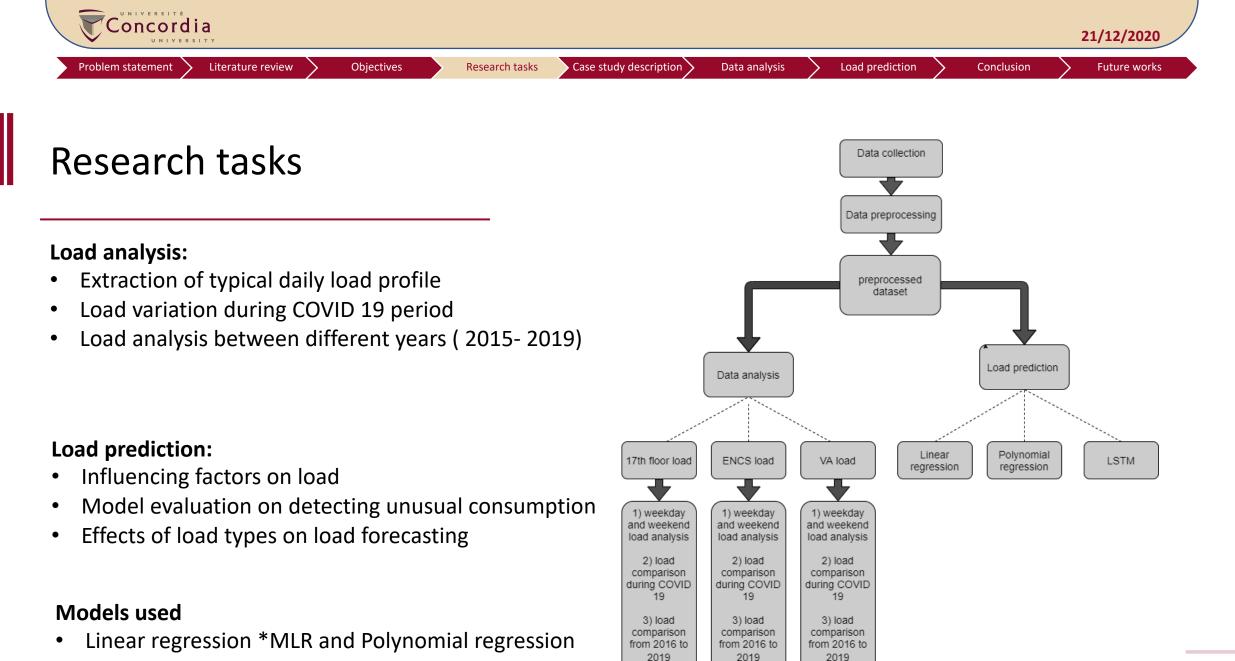
Understanding from literature and Existing gaps

Understanding from literature:

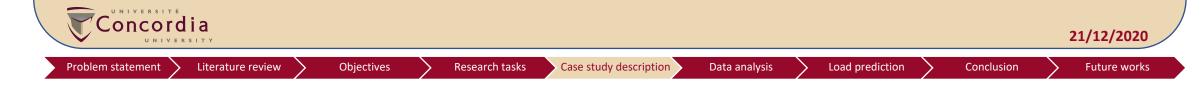
- Prediction of daily or monthly peak demand or load profiles.
- comparing predictive models' performance based on accuracy, error, and running time.
- hybrid models.
- MLR is a fast and easy method but suffer from low accuracy.
- Advantages of using deep learning methods for time series forecasting.
- Application of deep learning on real case study
- Application of load analytics in real-world cases



- 1. To analyze the energy consumption of EV building as base study for load prediction
- 2. To study the effects of weather variables on load prediction
- 3. To forecast electrical load for different time horizons with Long Short term memory (LSTM) model
- 4. To analyze the performance of LSTM on different load types
- 5. To Provide energy efficient suggestions based on load analysis and load prediction



LSTM



Case study – EV building

Heating:

- Natural gas boilers
- Electrical boiler

Cooling:

- Coolers
- Natural ventilation

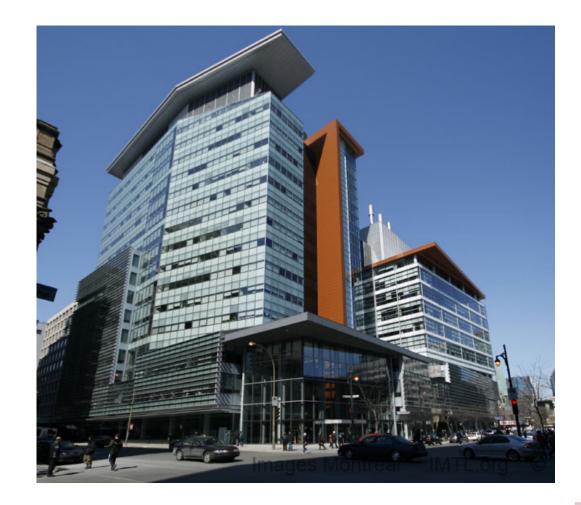
ENCS:

- 17 floors
- Mechanical and chemical laboratories on 12th – 16th floors

VA:

•

- 12 floors
- Mechanical room is on the 12th floor.



Available data set

	Points in data set	Name of attribute	Unit	Time resolution
	Point_1	EV electric boiler	kW	15 minutes
EV dataset	Point_3	17^{th} floor transformer	kW	15 minutes
	Point_4	ENCS transformer	kW	15 minutes
	Point_5	VA transformer	kW	15 minutes

	Features name	Unit	Time resolution
	Solar Radiation	W/m^2	hourly
Waathan datasat	Humidity	%	hourly
Weather dataset	Temperature	°c	hourly
	Wind direction	Degrees from North	hourly
	Wind velocity	m/s	hourly

• EV weather station

Draft Final Report for Environment Canada - Concordia University Project

2019-2019-2019-

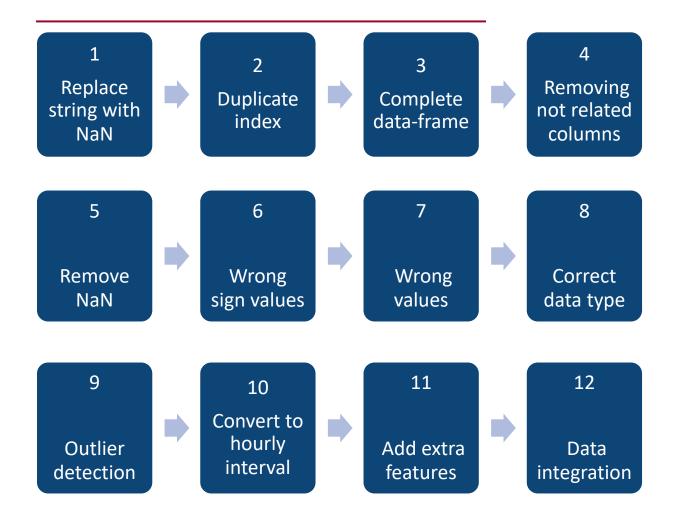
2019-

2019-2019-

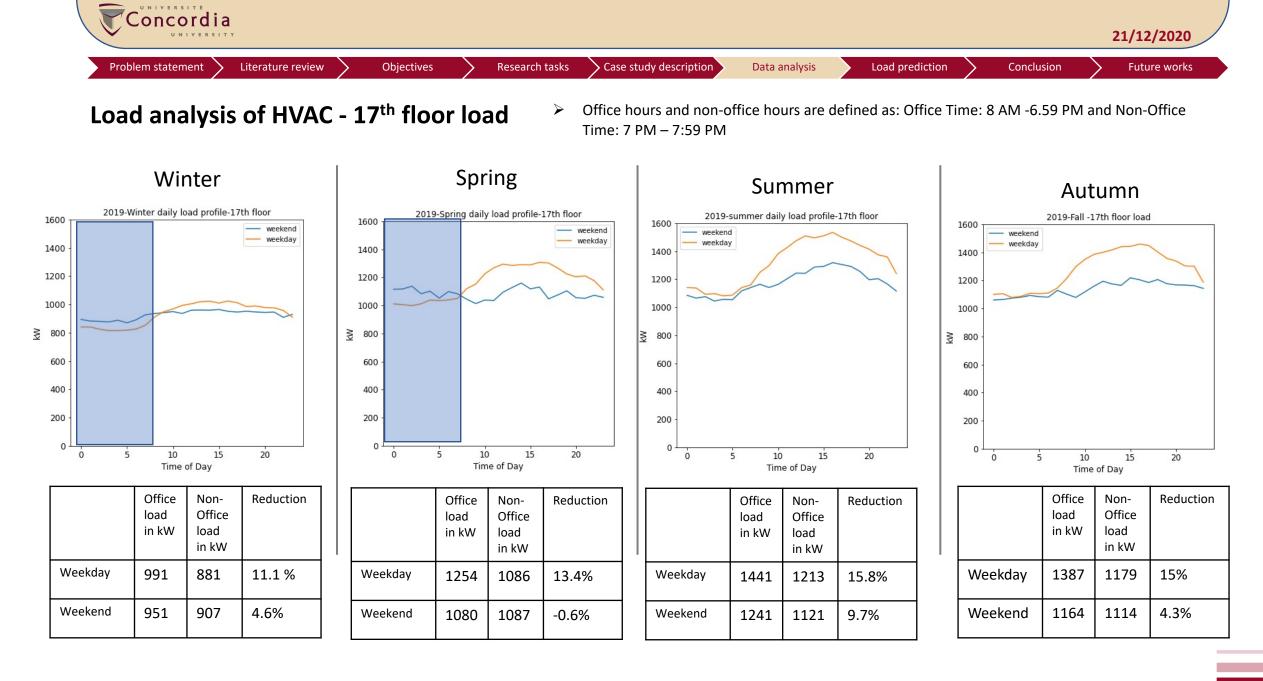
2019-2019-

2019-2019-2019-2019-

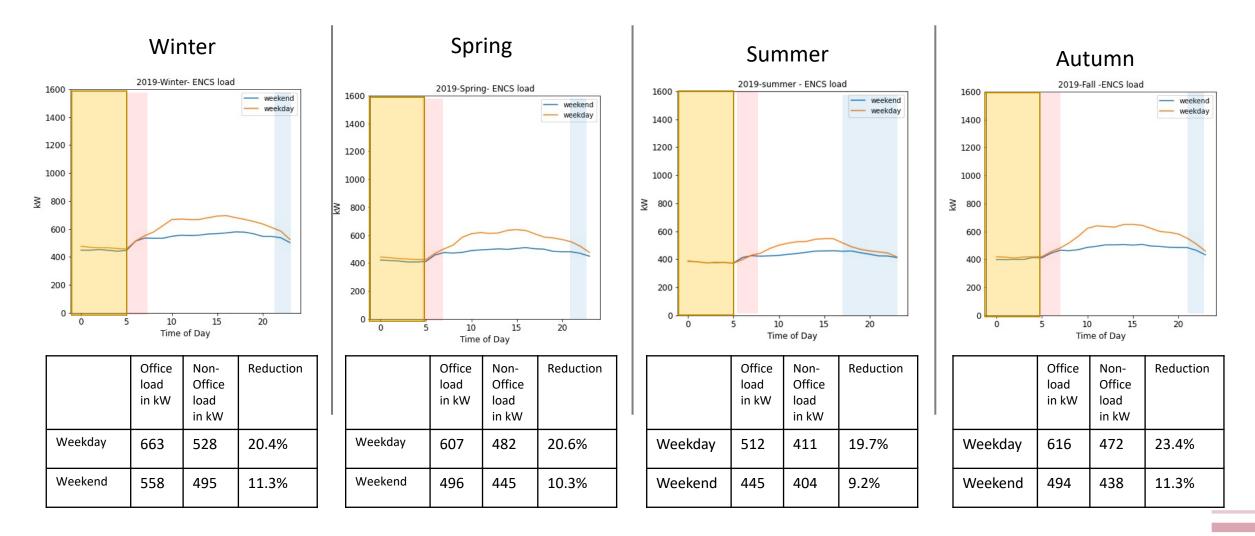
Data preprocessing



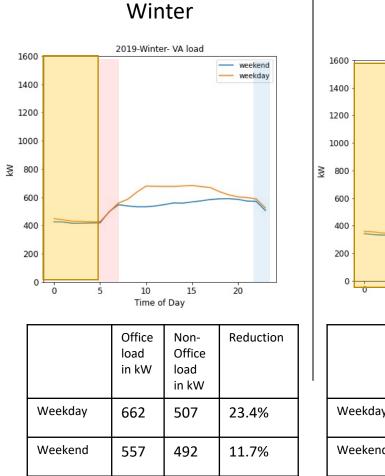
	3)	TIME (-3	(-3)	TIME			
	.)	TIME (1	v/0!	#DI			
	ss	Data Lo	Loss	Data			
	ss	Data Lo	Loss	Data			
	ss	Data Lo	Loss	Data			
wer	pc	Data Lo	Loss	Data			
	1		12	100.1	124.7	10:00:00	-10-31
713.5		257	13	100.1	110.6	11:00:00	-10-31
		173	13.7	100.1	97.7	12:00:00	-10-31
-716.25		139	14.7	100.1	85.8	13:00:00	-10-31
710.20		180	14.7	100.1	19.9	14:00:00	-10-31
708.75		234	-39.9	0	12.8	15:00:00	-10-31
100.15		186	14.8	100.1	7.2	16:00:00	-10-31
705.5		196	15.1	100.1	0.7	17:00:00	-10-31
705.5		160	15.1	100.1	-0.5	18:00:00	-10-31
	-		15.6	100.1	-0.4	19:00:00	-10-31
	7.2		11.7	100.1	-0.4	20:00:00	-10-31
	5.6		9.7	100.1	-0.5	21:00:00	-10-31
	11.8		8.3	100.1	-0.5	22:00:00	-10-31
	9.0		7.8	100.1	-0.4	23:00:00	-10-31
	-		_				

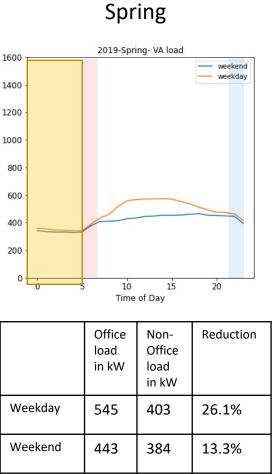


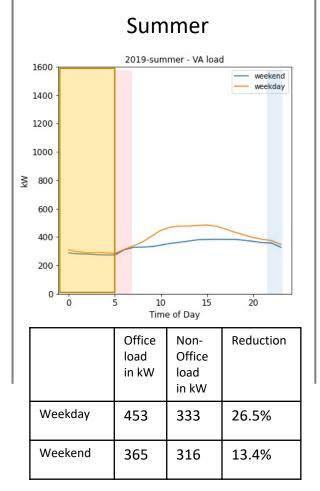
Load analysis - ENCS load

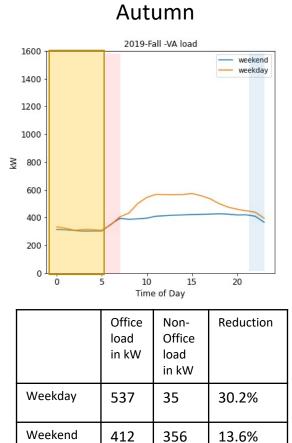


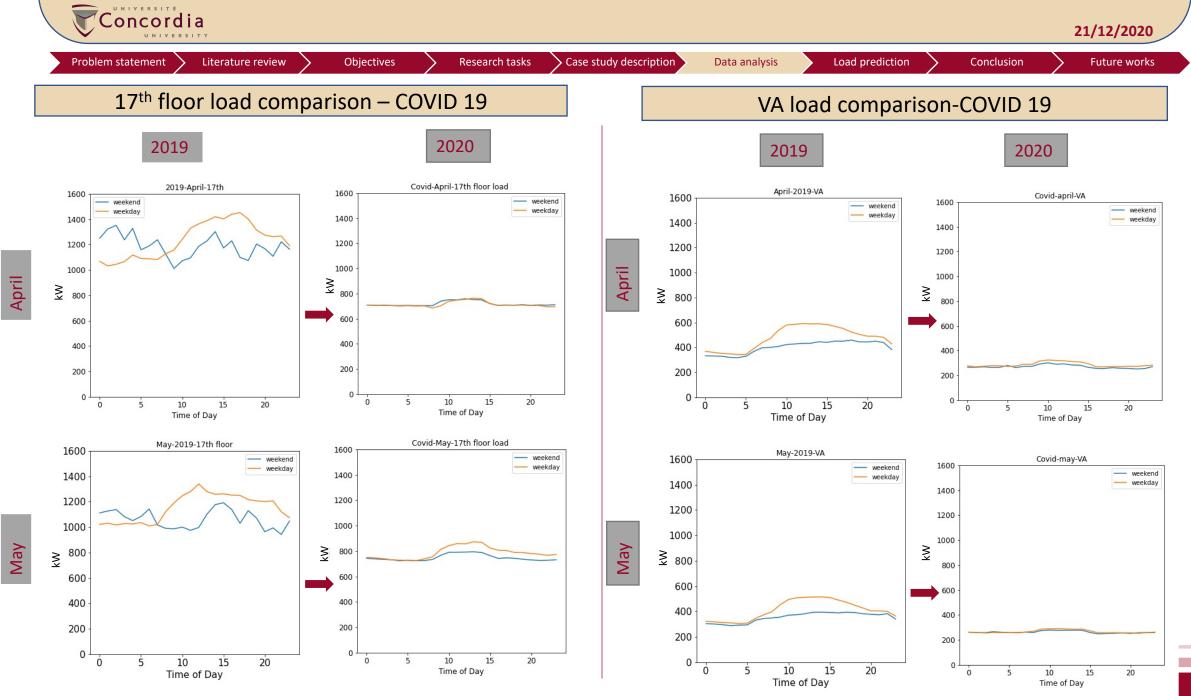
Load analysis - VA load









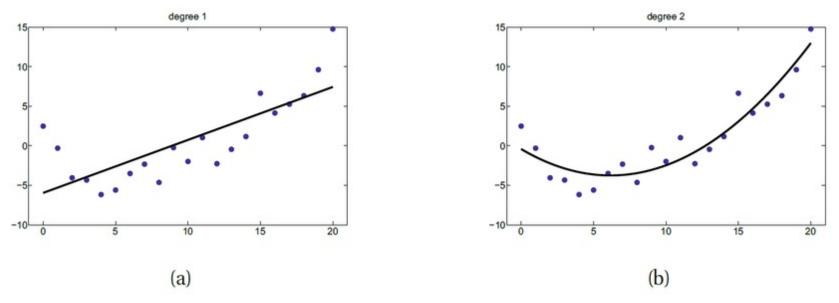


Load prediction

Linear and Polynomial regression

Linear Regression: $\hat{y}_i = \beta_0 + \beta_1 * x_{i1} + \beta_2 * x_{i2} + \dots + \beta_j * x_{ij} + \varepsilon$

Polynomial regression: $\hat{y}_i = \beta_0 + \beta_1 * x_{i1} + \beta_2 * x_{i2}^2 + \beta_3 * x_{i3}^3 + \dots \beta * x_{ij}^j$

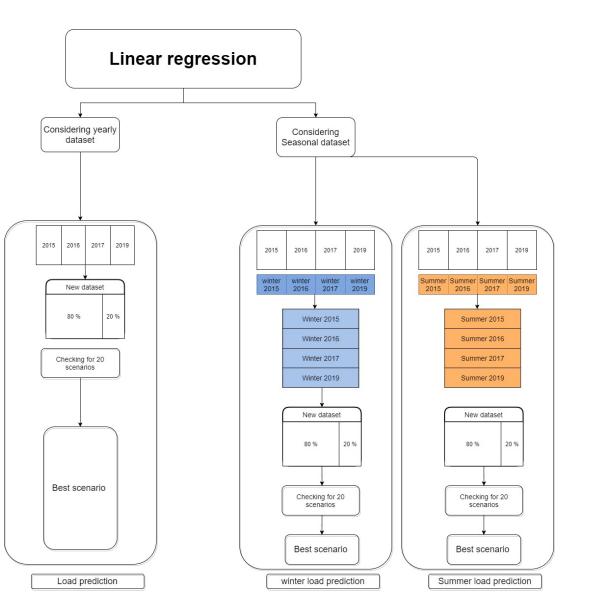


https://www.researchgate.net/figure/Part-a-Represents-linear-regression-on-a-one-dimensional-data-17-Part-b_fig2_320609829

 Problem statement
 Literature review
 Objectives
 Research tasks
 Case study description
 Data analysis
 Load prediction
 Conclusion
 Future works

Scenarios

	Calendar data	Solar Radiation	Temperature	Relative humidity	Wind direction	Wind velocity
S1	*	*				
S2	*		*			
S3	*			*		
S4	*				*	
S5	*					*
S 6	*	*	*			
S 7	*	*		*		
S 8	*	*			*	
S9	*	*				*
S10	*		*	*		
S11	*		*		*	
S12	*		*			*
S13	*			*	*	
S14	*			*		*
S15	*				*	*
S16	*	*	*	*		
S17	*	*	*		*	
S18	*	*	*			*
S19	*	*	*	*	*	*
S20	*					

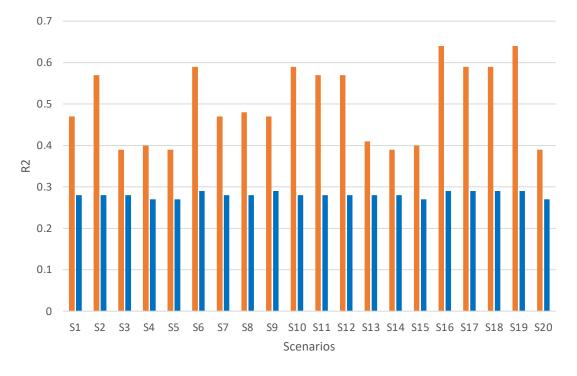


21

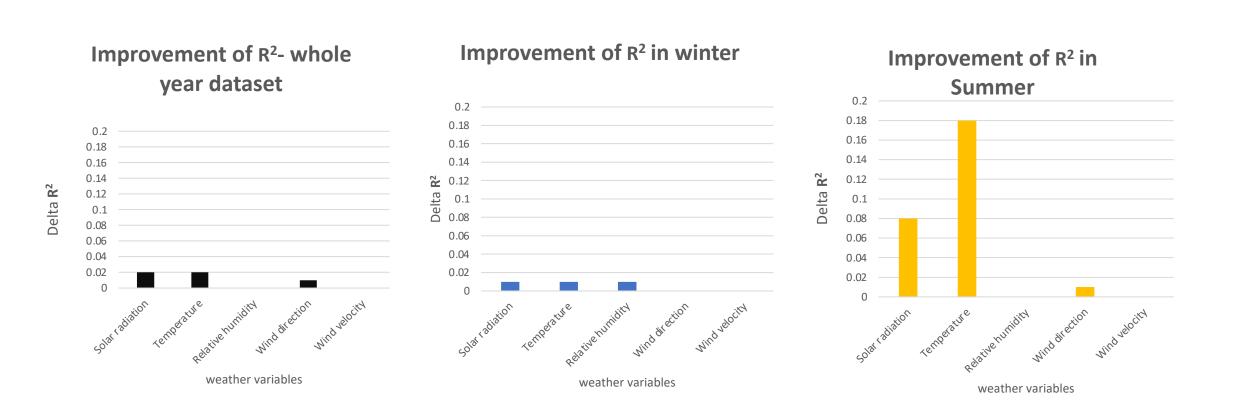
Comparison of different scenarios for summer and winter prediction

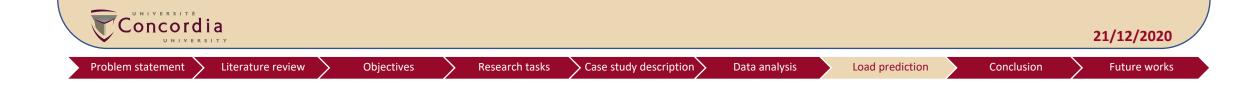
	Summer		Wii	nter
Linear regression scenarios	R ² in Summer	MAPE	R ² in Winter	MAPE
S1	0.47	12.74	0.28	24.52
S2	0.57	11.36	0.28	24.62
S3	0.39	13.58	0.28	24.64
S4	0.4	13.48	0.27	24.68
S5	0.39	13.59	0.27	24.63
S6	0.59	10.94	0.29	24.5
S7	0.47	12.74	0.28	24.51
S8	0.48	12.67	0.28	24.51
S9	0.47	12.74	0.29	24.47
S10	0.59	11.14	0.28	24.61
S11	0.57	11.37	0.28	24.62
S12	0.57	11.35	0.28	24.58
S13	0.41	13.46	0.28	24.64
S14	0.39	13.57	0.28	24.59
S15	0.4	13.48	0.27	24.63
S16	0.64	10.46	0.29	24.5
S17	0.59	10.94	0.29	24.5
S18	0.59	10.94	0.29	24.46
S19	0.64	10.47	0.29	24.46
S20	0.39	13.59	0.27	24.68

Comparison of prediction accuracy for different scenarios in summer and winter

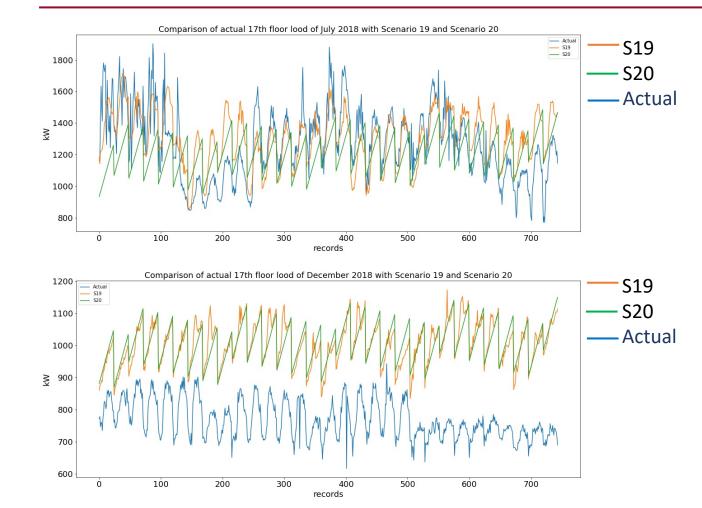


Effect of weather parameters on load prediction





Actual vs predicated load by linear regression

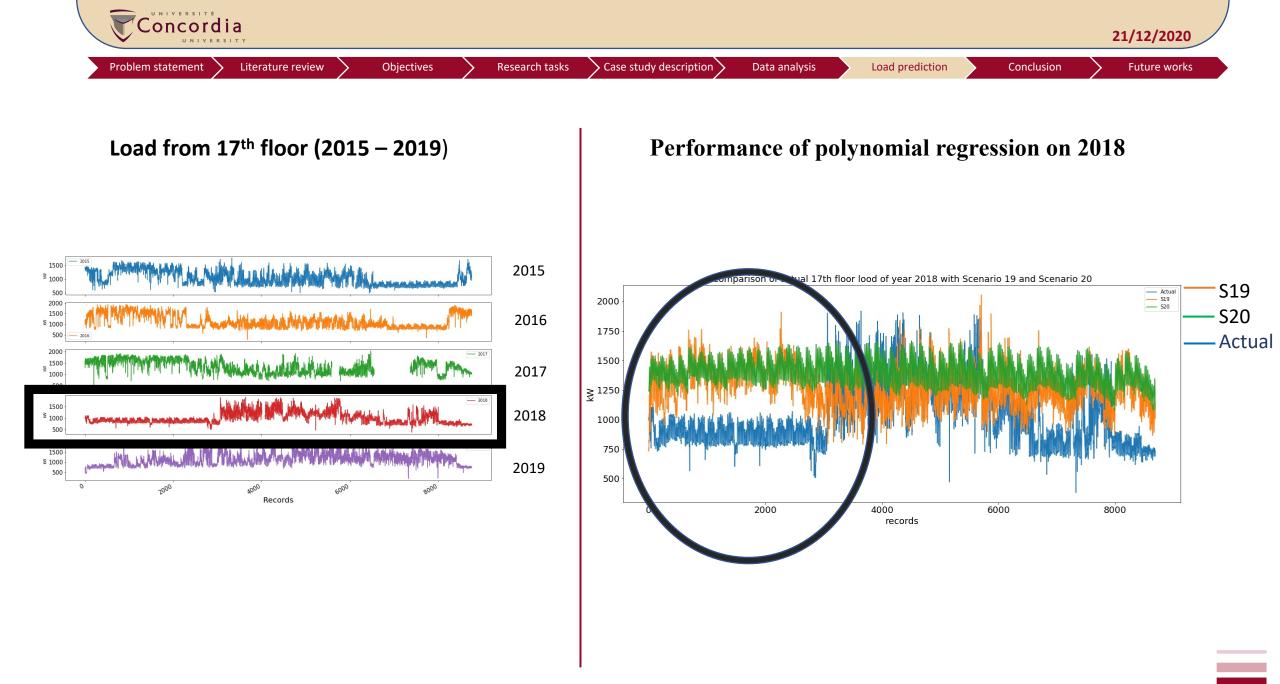


Comparison of July 2018 with Linear regression:

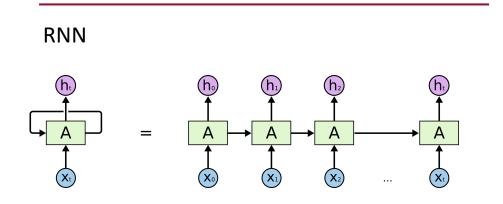
 The model is trained based on summer months of years (2015, 2016 and 2017)

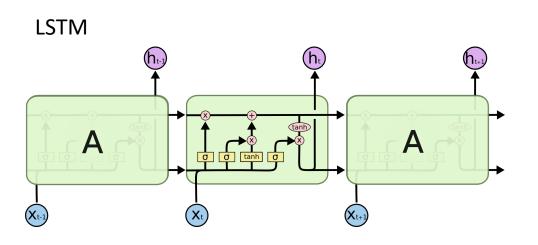
Comparison of December 2018 with Linear regression:

 The model is trained based on winter months of years (2015,2016 and 2017)



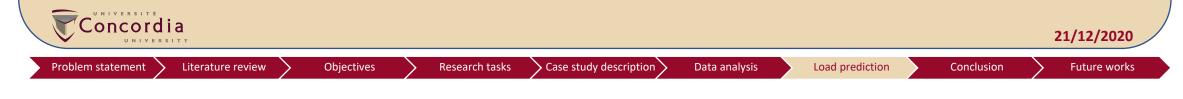
LSTM



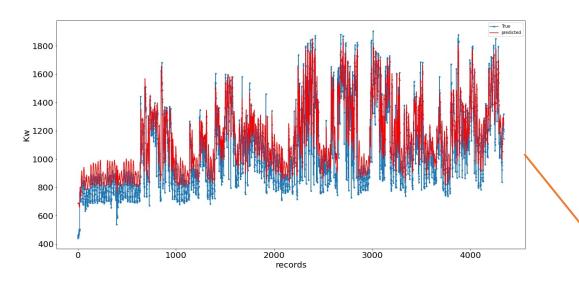


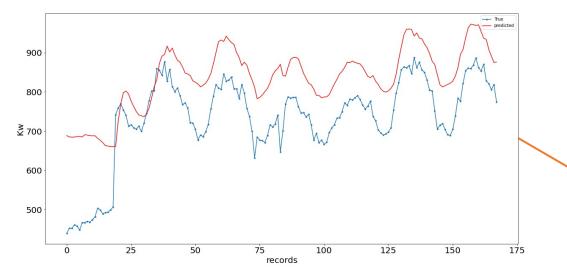
Proposed LSTM hyperparameters

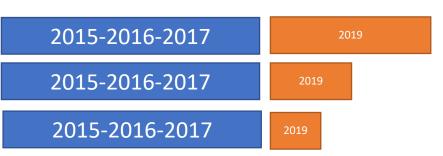
LSTM model properties				
Number of hidden layer	2			
Neurons in each layer	50			
Window size	24			
Learning rate	0.0001			
Activation function	relu			
Optimizer	adam			
epoch	30			
Batch size	64			
Shuffle	False			



LSTM performance for different time horizons



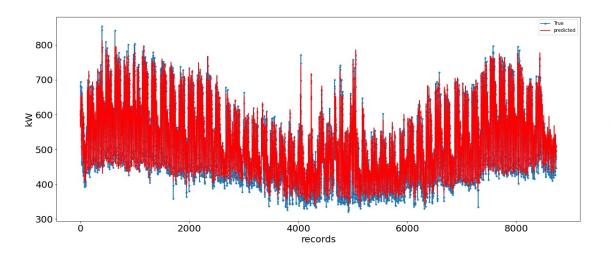




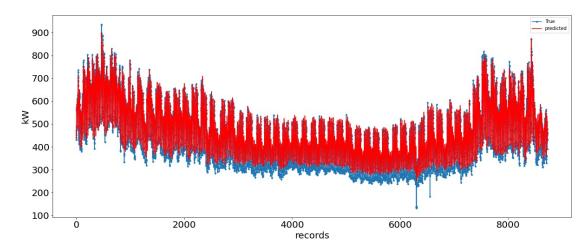
Time horizons	R2	ΜΑΡΕ
Full year	0.75	10.97
6 -month ahead	0.74	11.66
1 month ahead	0.53	13.5

Time horizons	R2	ΜΑΡΕ
2- week ahead	-0.35	14.33
1 -week ahead	-0.12	15.76
1 -day ahead	-1.64	35.64

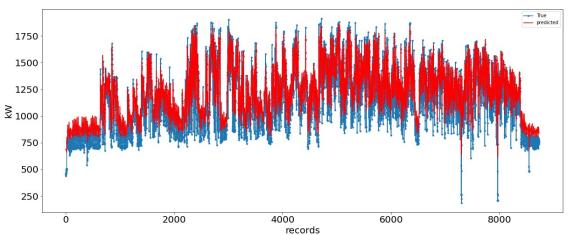
ENCS load forecasting with LSTM - 2019



VA load forecasting with LSTM - 2019



HVAC load forecasting with LSTM - 2019



Comparison of performance for three transformers

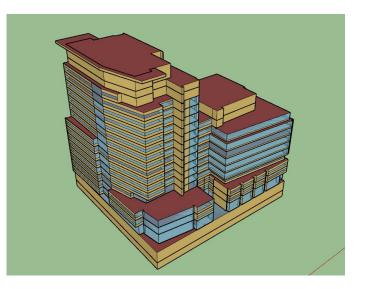
Load types	R^2	MAPE	mse
ENCS	0.92	4.35	818.3
VA	0.93	6.87	1146.4
17^{th} floor load	0.75	10.97	19812.66

Conclusion

- The pattern of HVAC load and plug loads was extracted and studied. Reflecting schedule settings and behavioral patterns
- The reduction of load during COVID 19 was 42% for HVAC load in April (weekday)
- Temperature and solar radiation are two most affecting weather factors in summer responsible for 18 % and 8% improvement of accuracy.
- The best predictive model is the one considering calendar data with all weather columns. In summer S19 provided 64% accuracy and in winter 29%.
- The prediction model was able to capture unusual consumption.
- The performance of LSTM on ENCS and VA load was higher comparing to HVAC load. More that 90% for ENCS and VA, while HVAC load of 17th floor got 75% accuracy.
- The accuracy of forecasting decreases as the test set size reduce from one year to one month .
- Negative R2 was referring to unusual load data in January.

Future works

- Integration of python codes as simulation blocks to CERC urban energy modeling workflow
- Using 3D Model as input for energy simulation software



Thank you for listening

