MATH 204 Self-Assessment Duration: 1Hr Student Success Centre Concordia University

Instruction | For questions 1 - 3 only, choose one out of the provided options as answer.

- 1. Which of the following is a unit vector?
 - a. (1,0,0,1)b. $(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}},0,0)$

- c. $(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}, 0, 0)$ d. *None of the above*
- 2. Which of the following set is the basis of R^4 ?
 - a. (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)
 - b. (1,0,0,1), (1,0,0,0), (0,0,1,1), (0,0,0,1)
 - c. (1,0,0,0), (0,1,0,0), (0,0,1,0), (1,1,1,0)
 - d. None of the above
- 3. Which of the following is a possible subspace of R^4 ?
 - a. A = (a, b, c, d) | (a + b + c + d) > 0
 - b. B = (a, b, c, d) | (a * b) > 0
 - c. C = (a, b, c)|(a + b + c) > 0
 - d. D = (a, c, d) | (c * d) > 0
- 4. Given the matrix below:

$$A = \begin{pmatrix} 2 & 3 & -1 \\ 3 & 5 & 2 \\ 1 & -2 & -3 \end{pmatrix}$$

a. Use Gaussian-Jordan elimination to find the inverse matrix of A.

	[2	3	-1 1	0	[0
<i>Hint</i> Your work should start with this:	3	5	2 0	1	0
	l1	-2	-3l 0	0	1

b. Based on the result from part a, find the determinant of matrix A.*Hint* | You will need the echelon form of matrix A.

c. Given matrix $C = \begin{bmatrix} 1 \\ 8 \\ -1 \end{bmatrix}$. Find the solution for the equation A * x = C. *Hint*| Use the inverse of matrix A and matrix multiplication.

- 5. Find the solution to the following system of equations:
 - $\begin{cases} x_1 + x_2 2x_3 + x_4 = 5\\ 2x_1 + 2x_2 3x_3 + 4x_4 = 3\\ 3x_1 + 3x_2 4x_3 + 2x_4 = 1 \end{cases}$
- 6. Given two vectors:

$$\vec{u} = \langle 2, 4, 5 \rangle$$
 and $\vec{v} = \langle 1, 0, 1 \rangle$.

Find the following:

- a. Their dot product $\vec{u} \cdot \vec{v}$.
- b. The angle between \vec{u}, \vec{v} .
- c. Their cross product $\vec{u} \times \vec{v}$.
- d. The equation of the plane containing \vec{u}, \vec{v} and the point P(1, 3, -2).
- 7. Let $P_1 = (2,3,6), P_2 = (1,-1,-2), P_3 = (1,4,-2)$ and $P_4 = (2,0,3)$.
 - a. Find the area of the triangle made by the three vertices P_1, P_2, P_3 .
 - b. Find the volume of the parallelepiped made by the vectors $\overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}, \overrightarrow{P_1P_4}$.

8. Given matrix $A = \begin{pmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{pmatrix}$ and the eigenvalues $\lambda_1 = 5$ (multiplicity = 1), $\lambda_2 = 3$ (multiplicity = 2). Find the eigenvectors of matrix A.

ANSWER KEY:

1. b.

[The magnitude/norm of a unit vector must equal to one]

2. a.

[A member of a basis must be minimal. It cannot be expressed by the other members using linear expression]

3. b.

[A subspace is a subset of R^4 so that its members must have four elements. A subspace is a vector space, which means that, it must satisfy all of the axioms for a vector space. Typically, the sum of two members is a new member of the space and the product of a member with any constant is also a member of the space.]

4.	a.	$Inv(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & -5 & -7 \\ 2 & 22 & 22 \\ -1 & 7 & 1 \\ 2 & 22 & 22 \end{bmatrix}$
	b.	det(A) = 22
	c.	$X = \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}$
		Y
5. $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} =$	$\begin{bmatrix} 0\\ -9\\ -7\\ 0 \end{bmatrix}$	$\left + \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} s \right $

6.

a.	$\vec{u} \cdot \vec{v} = 7$	
b.	angle, $\alpha = 42.45^{\circ}$	
c.	$\vec{u} \times \vec{v} = \langle 4, 3, -4 \rangle$	
d.	Equation of plane: $4x + 3y - 4z = 21$	

7.

a.	Area = 18.282 square units
b.	<i>Volume</i> = 27 <i>cubic units</i>

8. For $\lambda_1 = 5$, $\lambda_2 = \lambda_3 = 3$, corresponding eigenvectors are:

	[1]		[-1]	1		[1]
$\overrightarrow{v_1} =$	2	$, \overrightarrow{v_2} =$	1	, 1	$\overrightarrow{v_3} =$	0
	1		L 0 _			1