MATH 204 Self-Assessment ■ Duration: 1Hr
 Student Success Centre
 Concordia University

$\underline{\text { Instruction| }}$ For questions $1-3$ only, choose one out of the provided options as answer.

1. Which of the following is a unit vector?
a. $(1,0,0,1)$
c. $\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}, 0,0\right)$
b. $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0,0\right)$
d. None of the above
2. Which of the following set is the basis of R^{4} ?
a. $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$
b. $(1,0,0,1),(1,0,0,0),(0,0,1,1),(0,0,0,1)$
c. $(1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,0)$
d. None of the above
3. Which of the following is a possible subspace of R^{4} ?
a. $A=(a, b, c, d) \mid(a+b+c+d)>0$
b. $B=(a, b, c, d) \mid(a * b)>0$
c. $C=(a, b, c) \mid(a+b+c)>0$
d. $D=(a, c, d) \mid(c * d)>0$
4. Given the matrix below:

$$
A=\left(\begin{array}{ccc}
2 & 3 & -1 \\
3 & 5 & 2 \\
1 & -2 & -3
\end{array}\right)
$$

a. Use Gaussian-Jordan elimination to find the inverse matrix of A.
$\underline{H i n t \mid}$ Your work should start with this: $\left[\begin{array}{ccc|ccc}2 & 3 & -1 & 1 & 0 & 0 \\ 3 & 5 & 2 & 0 & 1 & 0 \\ 1 & -2 & -3 & 0 & 0 & 1\end{array}\right]$
b. Based on the result from part a, find the determinant of matrix A. $\underline{\text { Hint| }}$ You will need the echelon form of matrix A.
c. Given matrix $C=\left[\begin{array}{c}1 \\ 8 \\ -1\end{array}\right]$. Find the solution for the equation $A * x=C$. $\underline{H i n t \mid}$ Use the inverse of matrix A and matrix multiplication.
5. Find the solution to the following system of equations:

$$
\left\{\begin{array}{c}
x_{1}+x_{2}-2 x_{3}+x_{4}=5 \\
2 x_{1}+2 x_{2}-3 x_{3}+4 x_{4}=3 \\
3 x_{1}+3 x_{2}-4 x_{3}+2 x_{4}=1
\end{array}\right.
$$

6. Given two vectors:

$$
\vec{u}=\langle 2,4,5\rangle \text { and } \vec{v}=\langle 1,0,1\rangle .
$$

Find the following:
a. Their dot product $\vec{u} \cdot \vec{v}$.
b. The angle between \vec{u}, \vec{v}.
c. Their cross product $\vec{u} \times \vec{v}$.
d. The equation of the plane containing \vec{u}, \vec{v} and the point $P(1,3,-2)$.
7. Let $P_{1}=(2,3,6), P_{2}=(1,-1,-2), P_{3}=(1,4,-2)$ and $P_{4}=(2,0,3)$.
a. Find the area of the triangle made by the three vertices P_{1}, P_{2}, P_{3}.
b. Find the volume of the parallelepiped made by the vectors $\overrightarrow{P_{1} P_{2}}, \overrightarrow{P_{1} P_{3}}, \overrightarrow{P_{1} P_{4}}$.
8. Given matrix $A=\left(\begin{array}{ccc}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right)$ and the eigenvalues $\lambda_{1}=5($ multiplicity $=1)$, $\lambda_{2}=3$ (multiplicity $=2$). Find the eigenvectors of matrix A.

ANSWER KEY：

1．b．
〔The magnitude／norm of a unit vector must equal to one〕

2．a．
〔A member of a basis must be minimal．It cannot be expressed by the other members using linear expression］

3．b．
〔A subspace is a subset of R^{4} so that its members must have four elements．A subspace is a vector space，which means that，it must satisfy all of the axioms for a vector space．Typically，the sum of two members is a new member of the space and the product of a member with any constant is also a member of the space．］
4.

| | |
| :--- | :--- | :--- | :--- |
| a． | $\operatorname{Inv}(A)=\left[\begin{array}{lll\|lll}1 & 0 & 0 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} & \frac{-5}{22} & \frac{-7}{22} \\ 0 & 0 & 1 & \frac{-1}{2} & \frac{7}{22} & \frac{1}{22}\end{array}\right]$ |
| b． | $\operatorname{det}(A)=22$ |
| c． | $X=\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]$ |

5．$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ -9 \\ -7 \\ 0\end{array}\right]+\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right] s$
6.

a.	$\vec{u} \cdot \vec{v}=7$
b.	angle, $\alpha=42.45^{\circ}$
c.	$\vec{u} \times \vec{v}=\langle 4,3,-4\rangle$
d.	Equation of plane: $4 x+3 y-4 z=21$

7.

a.	Area $=18.282$ square units
b.	Volume $=27$ cubic units

8. For $\lambda_{1}=5, \lambda_{2}=\lambda_{3}=3$, corresponding eigenvectors are:

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

